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Chapter 0 Introduction

Computer science is the art of solving problems with computers. This is a broad definition that encom-
passes an equally broad field. Within computer science, we find software engineering, bioinformatics, cryp-
tography, machine learning, human-computer interaction, graphics, and a host of other fields.

Mathematics underpins all of these endeavors in computer science. We use graphs to model complex prob-
lems, and exploit their mathematical properties to solve them. We use recursion to break down seemingly
insurmountable problems into smaller and more manageable problems. We use topology, linear algebra, and
geometry in 3D graphics. We study computation itself in computability and complexity theory, with results
that have profound impacts on compiler design, machine learning, cryptography, computer graphics, and
data processing.

This set of course notes serves as a first course in the mathematical foundations of computing. It will teach
you how to model problems mathematically, reason about them abstractly, and then apply a battery of tech-
niques to explore their properties. It will teach you to prove mathematical truths beyond a shadow of a
doubt. It will give you insight into the fundamental nature of computation and what can and cannot be
solved by computers. It will introduce you to complexity theory and some of the most important problems
in all computer science.

This set of course notes is intended to give a broad and deep introduction to the mathematics that lie at the
heart of computer science. It begins with a survey of discrete mathematics — basic set theory and proof
techniques, mathematic induction, graphs, relations, functions, and logic — then explores computability and
complexity theory. No prior mathematical background is necessary.

These course notes are designed to provide a secondary treatment of the material from Stanford's CS103
course. The topic organization roughly follows the presentation from CS103, albeit at a much deeper level.
It is designed to supplement lectures from CS103 with additional exposition on each topic, broader exam-
ples, and more advanced applications and techniques. My hope is that there will be something for everyone.
If you're interested in brushing up on definitions and seeing a few examples of the various techniques, feel
free to read over the relevant parts of each chapter. If you want to see the techniques applied to a variety of
problems, look over the examples that catch your interest. If you want to see just how deep the rabbit hole
goes, read over the entire chapter and work through all the starred exercises.

0.1 How These Notes are Organized

The organization of this book into chapters is as follows:

*  Chapter One motivates our discussion of mathematics by giving a brief outline of set theory, con-
cluding with Cantor's theorem, a profound and powerful result about the nature of infinity.

*  Chapter Two lays the groundwork for formal proofs by exploring several key proof techniques that
we will use throughout the rest of these notes.

*  Chapter Three explores mathematical induction, a proof technique that we will use extensively when
proving results about discrete structures, programs, and computation.

*  Chapter Four investigates mathematical structures called graphs that are useful for modeling com-
plex problems. These structures will form the basis for many of the models of computation we will
investigate later.
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»  Chapter Five explores different ways in which objects often relate to one another and the mathemat-
ical structures of these relations.

* Chapter Six revisits the material on set theory from the first chapter with a mathematically rigorous
exploration of the properties of infinity.

Some of the sections of these notes are marked with a % symbol. These sections contain more advanced
material that, while interesting, is not essential to understanding the course material. If you are interested in
learning more about the topic, I would suggest reading through it. However, if you're pressed for time, feel
free to skip these sections.

Similarly, some of the chapter exercises are marked with the % symbol. These exercises are more difficult
than the other exercises. I highly recommend attempting at least one or two of the starred exercises from
each chapter. If you're up for a real challenge, try working through all of them!

This is a work-in-progress draft of what I hope will become a full set of course notes for CS103. Right now,
the notes only cover up through the first six or seven lectures. I am hoping to expand that over the course of
the upcoming months. Since this is a first draft, there are definitely going to be errors in here, whether
they're typoz, grammatically problems, " ., and logic errors. If you find any errors, please don't hesitate
to get in touch with me at htiek @ cs.stanford.edu — I genuinely want these notes to be as good as they can
be, so any feedback would be most appreciated.

0.2 Acknowledgements

These course notes represent the product of several years of hard work. I received invaluable feedback on
the content and structure from many of my friends, students, and colleagues. In particular, I'd like to thank
Leonid Shamis, Sophia Westwood, and Amy Nguyen for their comments. Their feedback has dramatically
improved the quality of these notes, and I'm very grateful for the time and effort they put into reviewing
drafts at every stage.

I'd also like to thank everyone who found typos or other errors in this set of course notes. Thanks to Rob
Patrick, Emily Tang, Vignesh Venkataraman, Akshay Agrawal, Stephanie Tsai, Clara Fannjiang, Andrew
Dahlstrom, William Lewis, Arzav Jain, Luke Pappas, Mark Cuson, Greg Gibson, Zak Butler, Katherine
Kuang, Anshul Samar, Yitao Zhang, Karen Gomez, Emily Alsentzer, Sophie Ye, Jessica Xu, Linda Thomp-
son, AJ Hollopeter, Joel Aguero, Gary Beene, Angela Ellington, Mitchell Douglass, Lloyd Lucin, Lidan
Cao, Doug Vargha, Craig Smail, Dominique Alessi, Teun de Planque, Gregorio Lopes, and Eliezer Abate. If
you submitted a correction in the past and your name doesn't appear on this list, please let me know; I want
to give credit where credit is due!
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Chapter 1 Sets and Cantor's Theorem

Our journey into the realm of mathematics begins with an exploration of a surprisingly nuanced concept: the
set. Informally, a set is just a collection of things, whether it's a set of numbers, a set of clothes, a set of
nodes in a network, or a set of other sets. Amazingly, given this very simple starting point, it is possible to
prove a result known as Cantor's Theorem that provides a striking and profound limit on what problems a
computer program can solve. In this introductory chapter, we'll build up some basic mathematical machin-
ery around sets. Then, we will see how the simple notion of asking how big a set is can lead to incredible
and shocking results.

1.1 What is a Set?

Let's begin with a simple definition:

A set is an unordered collection of distinct elements.

What exactly does this mean? Intuitively, you can think of a set as a group of things. Those things must be
distinct, which means that you can't have multiple copies of the same object in a set. Additionally, those
things are unordered, so there's no notion of a “first” thing in the group, a “second” thing in a group, etc.

We need two additional pieces of terminology to talk about sets:

An element is something contained within a set.

To denote a set, we write the elements of the set within curly braces. For example, the set {1, 2, 3} is a set
with three elements: 1, 2, and 3. The set { cat, dog } is a set containing the two elements “cat” and “dog.”

Because sets are unordered collections, the order in which we list the elements of a set doesn't matter. This
means that the sets {1, 2, 3}, {2, 1, 3}, and {3, 2, 1} are all descriptions of exactly the same set. Also, be-
cause sets are unordered collections of distinct elements, no element can appear more than once in the same
set. In particular, this means that if we write out a set like {1, 1, 1, 1, 1}, it's completely equivalent to writ-
ing out the set {1}, since sets can't contain duplicates. Similarly, {1, 2, 2, 2, 3} and {3, 2, 1} are the same
set, since ordering doesn't matter and duplicates are ignored.

When working with sets, we are often interested in determining whether or not some object is an element of
a set. We use the notation x € S to denote that x is an element of the set S. For example, we would write
that 1 € {1, 2, 3}, or that cat € { cat, dog }. If spoken aloud, you'd read x € S as “x is an element of S.”
Similarly, we use the notation x ¢ S to denote that x is not an element of S. So, we would have 1 ¢ {2, 3, 4},
dog ¢ {1, 2, 3}, and ibex ¢ {cat, dog}. You can read x ¢ S as “x is not an element of S.”

Sets appear almost everywhere in mathematics because they capture the very simple notion of a group of
things. If you'll notice, there aren't any requirements about what can be in a set. You can have sets of inte-
gers, sets of real numbers, sets of lines, sets of programs, and even sets of other sets. Through the remain-
der of your mathematical career, you'll see sets used as building blocks for larger and more complicated ob-
jects.



Chapter 1: Sets and Cantor's Theorem

As we just mentioned, it's possible to have sets that contain other sets. For example, the set { {1, 2},3 }isa
set containing two elements — the set {1, 2} and the number 3. There's no requirement that all of the ele-
ments of a set have the same “type,” so a single set could contain numbers, animals, colors, and other sets
without worry. That said, when working with sets that contain other sets, it's important to note what the ele-
ments of that set are. For example, consider the set

{{1,2}, {2,3}, 4}
which has just three elements: {1, 2}, {2, 3}, and 4. This means that
{12} e {{1,2},{2,3},4}
{2,3} e {{1,2},{2,3}, 4}
4 e {{1,2}, {2,3},4}

However, it is not true that 1 € {{1, 2}, {2, 3}, 4}. Although {{1, 2}, {2, 3}, 4} contains the set {1, 2}
which in turn contains 1, 1 itself is not an element of {{1, 2}, {2, 3}, 4}. In a sense, set containment is
“opaque,” in that it just asks whether the given object is directly contained within the set, not whether it is
contained with that set, a set contained within that set, etc. Consequently, we have that

¢ {{1,2},{2,3}, 4}

2¢ {{1,2},{2,3},4}

3¢ {{1,2},{2,3},4}
But we do have that

4e{{1,2}, {2,3},4}
because 4 is explicitly listed as a member of the set.

In the above example, it's fairly time-consuming to keep writing out the set {{1, 2}, {2, 3}, 4} over and over
again. Commonly, we'll assign names to mathematical objects to make it easier to refer to them in the fu-
ture. In our case, let's call this set “S.” Mathematically, we can write this out as

S= {{172}7 {233}74}

Given this definition, we can rewrite all of the above discussion much more compactly:

{1,2} €S 1¢S§
{2,3} €S 2¢S
4e8 3¢S

Throughout this book, and in the mathematical world at large, we'll be giving names to things and then ma-
nipulating and referencing those objects through those names. Hopefully you've used variables before when
programming, so I hope that this doesn't come as too much of a surprise.

Before we move on and begin talking about what sorts of operations we can perform on sets, we need to in-
troduce a very special set that we'll be making extensive use of: the empty set.

The empty set is the set that does not contain any elements.

It may seem a bit strange to think about a collection of no things, but that's precisely what the empty set is.
You can think of the empty set as representing a group that doesn't have anything in it. One way that we



117371

could write the empty set is as { }, indicating that it's a set (the curly braces), but that this set doesn't contain
anything (the fact that there's nothing in-between them!) However, in practice this notation is not used, and
we use the special symbol @ to denote the empty set.

The empty set has the nice property that there's nothing in it, which means that for any object x that you
ever find anywhere, x ¢ . This means that the statement x € @ is always false.

Let's return to our earlier discussion of sets containing other sets. It's possible to build sets that contain the
empty set. For example, the set { @ } is a set with one element in it, which is the empty set. Thus we have
that @ € { @ }. More importantly, note that @ and { @ } are not the same set. @ is a set that contains no
elements, while { @ } is a set that does indeed contain an element, namely the empty set. Be sure that you
understand this distinction!

1.2 Operations on Sets

Sets represent collections of things, and it's common to take multiple collections and ask questions of them.
What do the collections have in common? What do they have collectively? What does one set have that the
other does not? These questions are so important that mathematicians have rigorously defined them and
given them fancy mathematical names.

First, let's think about finding the elements in common between two sets. Suppose that I have two sets, one
of US coins and one of chemical elements. This first set, which we'll call C, is

C = { penny, nickel, dime, quarter, half-dollar, dollar }
and the second set, which we'll call E, contains these elements:
E = { hydrogen, helium, lithium, beryllium, boron, carbon, ..., ununseptium }

(Note the use of the ellipsis here. It's often acceptable in mathematics to use ellipses when there's a clear
pattern present, as in the above case where we're listing the elements in order. Usually, though, we'll invent
some new symbols we can use to more precisely describe what we mean.)

The sets C and E happen to have one element in common: nickel, since
nickel € C

and
nickel € E

However, some sets may have a larger overlap. For example, consider the sets {1, 2, 3} and {1, 3, 5}.
These sets have both 1 and 3 in common. Other sets, on the other hand, might not have anything in com-
mon at all. For example, the sets {cat, dog, ibex} and {1, 2, 3} have no elements in common.

Since sets serve to capture the notion of a collection of things, we might think about the set of elements that
two sets have in common. In fact, that's a perfectly reasonable thing to do, and it goes by the name inter-
section:

The intersection of two sets S and 7T, denoted S N 7T, is the set of elements contained in both S and 7.

For example, {1, 2,3} n {1, 3,5} = {1, 3}, since the two sets have exactly 1 and 3 in common. Using the
set C of currency and E of chemical elements from earlier, we would say that C N E = {nickel}.
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But what about the intersection of two sets that have nothing in common? This isn't anything to worry
about. Let's take an example: what is {cat, dog, ibex} N {1, 2, 3}? If we consider the set of elements com -
mon to both sets, we get the empty set @, since there aren't any common elements between the two sets.

Graphically, we can visualize the intersection of two sets by using a Venn diagram, a pictorial representation
of two sets and how they overlap. You have probably encountered Venn diagrams before in popular media.
These diagrams represent two sets as overlapping circles, with the elements common to both sets repre-
sented in the overlap. For example, if A = {1, 2, 3} and B = {3, 4, 5}, then we would visualize the sets as

A B

Given a Venn diagram like this, the intersection A N B is the set of elements in the intersection, which in this
case is {3}.

Just as we may be curious about the elements two sets have in common, we may also want to ask what ele -
ments two sets contain collectively. For example, given the sets A and B from above, we can see that, collec-
tively, the two sets contain 1, 2, 3, 4, and 5. Mathematically, the set of elements held collectively by two sets
is called the union:

The union of two sets A and B, denoted A U B, is the set of all elements contained in either of the
two sets.

Thus we would have that {1, 2,3} U {3, 4,5} = {1, 2, 3, 4, 5} (here, I'm color-coding the numbers to indi-
cate which sets they're from; we'll treat all numbers as the same regardless of their color). Since sets are un-
ordered collections of distinct elements, that it would also have been correct to write {1, 2, 3, 3, 4, 5} as the
union of the two sets, since {1, 2, 3,4, 5} and {1, 2, 3, 3, 4, 5} describe the same set. That said, to elimi-
nate redundancy, typically we'd prefer to write out {1, 2, 3, 4, 5} since it gets the same message across in
less space.

The symbols for union (U) and intersection (N) are similar to one another, and it's often easy to get them
confused. A useful mnemonic is that the symbol for union looks like a U, so you can think of the Union of
two sets.

An important (but slightly pedantic) point is that U can only be applied to two sets. This means that al-
though

{1,2,3}u4

might intuitively be the set {1, 2, 3, 4}, mathematically this statement isn't meaningful because 4 isn't a set.
If we wanted to represent the set formed by taking the set {1, 2, 3} and adding 4 to it, we would represent it
by writing

{1,2,3} u {4}
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Now, since both of the operands are sets, the above expression is perfectly well-defined. Similarly, it's not
mathematically well-defined to say

{1,2,3}n3
because 3 is not a set. Instead, we should write
{1,2,3}n {3}

Another important point to clarify when working with union or intersection is how they behave when ap-
plied to sets containing other sets. For example, what is the value of the following expression?

({1, 2}, {3}, {41} n {{L, 2, 3}, {4}}

When computing the intersection of two sets, all that we care about is what elements the two sets have in
common. Whether those elements themselves are sets or not is irrelevant. Here, for example, we can list off
the elements of the two sets {{1, 2}, {3}, {4}} and {{1, 2, 3}, {4}} as follows:

{12} € {{L,2}, {3}, {4}} {1,2,3} € {{1, 2,3}, {4}}
{3} € {{1, 2}, {3}, {4}} {4} € {{1,2,3}, {4}}
{4} € {{1,2}, {3}, {4}}

Looking at these two lists of elements, we can see that the only element that the two sets have in common is
the element {4}. As a result, we have that

{{1,2}, (3}, {4}} n{{1,2,3}, {4}} = {{4}}
That is, the set of just one element, which is the set containing 4.

You can think about computing the intersection of two sets as the act of peeling off just the outermost
braces from the two sets, leaving all the elements undisturbed. Then, looking at just those elements, find the
ones in common to both sets, and gather all of those elements back together.

The union of two sets works similarly. So, if we want to compute

{{L, 2}, {3}, {4}} U {{1, 2, 3}, {4}}

We would “peel off” the outer braces to find that the first set contains {1, 2}, {3}, and {4} and that the sec-
ond set contains {1, 2, 3} and {4}. If we then gather all of these together into a set, we get the result that

{L 2}, (3}, {41} U {{1, 2,3}, {4}} = {{1, 2}, {3}, {1, 2,3}, {4}}

Given two sets, we can find what they have in common by finding their intersection and can find what they
have collectively by using the union. But both of these operations are symmetric; it doesn't really matter
what order the sets are in, since AUB=BUAand AN B=BnA. (If this doesn't seem obvious, try out a
couple of examples and see if you notice anything). In a sense, the union and intersection of two sets don't
have a “privileged” set. However, at times we might be interested in learning about how one set differs from
another. Suppose that we have two sets A and B and want to find the elements of A that don't appear in B.
For example, given the sets A = {1, 2, 3} and B = {3, 4, 5}, we would note that the elements 1 and 2 are
unique to A and don't appear anywhere in B, and that 4 and 5 are unique to B and don't appear in A. We can
capture this notion precisely with the set difference operation:
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The set difference of A and B, denoted A — B or A \ B, is the set of elements contained in A but not
contained in B.

Note that there are two different notations for set difference. In this book we'll use the minus sign to indi-
cate set subtraction, but other authors use the slash for this purpose. You should be comfortable working
with both.

As an example of a set difference, {1, 2,3} — {3, 4,5} = {1, 2}, because 1 and 2 are in {1, 2, 3} but not {3,
4, 5}. Note, however, that {3, 4, 5} — {1, 2,3} = {4, 5}, because 4 and 5 are in {3, 4, 5} but not {1, 2, 3}.
Set difference is not symmetric. It's also possible for the difference of two sets to contain nothing at all,

which would happen if everything in the first set is also contained in the second set. For instance, we have
{1,2,3}-{1,2, 3,4} =@, since every element of {1, 2, 3} is also contained in {1, 2, 3, 4}.

There is one final set operation that we will touch on for now. Suppose that you and I travel the world and
each maintain a set of the places that we went. If we meet up to talk about our trip, we'd probably be most
interested to tell each other about the places that one of us had gone but the other hadn't. Let's say that set
A is the set of places I have been and set B is the set of places that you've been. If we take the set A — B,
this would give the set of places that I have been that you hadn't, and if you take the set B — A it would give
the set of places that you have been that I hadn't. These two sets, taken together, are quite interesting, be -
cause they represent fun places to talk about, since one of us would always be interested in hearing what the
other had to say. Using just the operators we've talked about so far, we could describe this overall set as
(B-A) U (A - B). For simplicity, though, we usually define one final operation on sets that makes this con-
cept easier to convey: the symmetric difference.

The set symmetric difference of two sets A and B, denoted A A B, is the set of elements that are con-
tained in exactly one of A or B, but not both.

For example, {1,2,3} A {3,4,5}={1,2,4,5},since 1 and 2 are in {1, 2, 3} but not {3,4, 5} and 4 and 5
are in {3, 4, 5} butnot {1, 2, 3}.

1.3 Special Sets

So far, we have described sets by explicitly listing off all of their elements: for example, {cat, dog, ibex}, or
{1, 2, 3}. But what if we wanted to consider a collection of things that is too big to be listed off this way?
For example, consider all the integers, of which there are infinitely many. Could we gather them together
into a set? What about the set of all possible English sentences, which is also infinitely huge? Can we make
a set out of them?

It turns out that the answer to both of these questions is “yes,” and sets can contain infinitely many elements.
But how would we describe such a set? Let's begin by trying to describe the set of all integers. We could
try writing this set as

(., 2,-1,0,1,2, ...}

which does indeed convey our intention. However, this isn't mathematically rigorous. For example, is this
the set

{0 -11,-7,-5,-3,2,-1,0,1,2,3,5,7, 11, ... }
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Or the set

{....-5,-4,-3,-2,-1,0,1,2,3,4,5, ... }
Or even the set

{...-16,-8,-4,-2,-1,0,1,2,3,4,5 ..., }

When working with complex mathematics, it's important that we be precise with our notation. Although
writing out a series of numbers with ellipses to indicate “and so on and so forth” might convey our intentions
well in some cases, we might end up accidentally being ambiguous.

To standardize terminology, mathematicians have invented a special symbol used to denote the set of all in-
tegers: the symbol Z.

The set of all integers is denoted Z. Intuitively, it is the set {...,-2,-1,0, 1,2, ...}

For example, 0 € Z, -137 € Z, and 42 € Z, but 1.37 ¢ Z, cat ¢ Z, and {1, 2, 3} ¢ Z. The integers are whole
numbers, which don't have any fractional parts.

When reading a statement like x € Z aloud, it's perfectly fine to read it as “x in Z,” but it's more common to
read such a statement as “x is an integer,” abstracting away from the set-theoretic definition to an (equiva-
lent) but more readable version.

Since Z really is the set of all integers, all of the set operations we've developed so far apply to it. For exam -
ple, we could consider the set Z N {1, 1.5, 2, 2.5}, which is the set {1, 2}. We can also compute the union
of Z and some other set. For example, Z U {1, 2, 3} is the set Z, since 1 € Z, 2 € Z, and 3 € Z.

You might be wondering — why Z? This is from the German word “Zahlen,” meaning “numbers.”” Much of
modern mathematics has its history in Germany, so many terms that we'll encounter in the course of this
book (for example, “Entscheidungsproblem”) come from German. Much older terms tend to come from
Latin or Greek, while results from the 8" through 13™ centuries are often Arabic (for example, “algebra” de-
rives from the title 4Laall 5 yall Clus & paisall QUS of a book written in the 9™ century by Persian math-
ematician al-Khwarizmi, whose name is the source of the word “algorithm.”) It's interesting to see how the
languages used in mathematics align with major world intellectual centers.

While in mathematics the integers appear just about everywhere, in computer science they don't arise as fre-
quently as you might expect. Most languages don't allow for negative array indices. Strings can't have a
negative number of characters in them. A loop never runs -3 times. More commonly, in computer science,
we find ourselves working with just the numbers 0, 1, 2, 3, ..., etc. These numbers are called the natural
numbers, and represent answers to questions of the form “how many?” Because natural numbers are so
ubiquitous in computing, the set of all natural numbers is particularly important:

The set of all natural numbers, denoted N, is the set N = {0, 1, 2, 3, ...}

For example, 0 € N, 137 e N, but-3¢ N, 1.1 ¢ N, and {1, 2} ¢ N. As with Z, we might read x € N as ei-
ther “x in N” or as “x is a natural number.”

*  Areader pointed out that the German words “Zahlen” (with an upper-case Z) and “zahlen” (with a lower-case z) actually have different
meanings. “Zahlen” means “numbers,” while “zahlen” is the infinitive “to pay.”
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The natural numbers arise frequently in computing as ways of counting loop iterations, the number of nodes
in a binary tree, the number of instructions executed by a program, etc.

Before we move on, I should point out that while there is a definite consensus on what Z is, there is not a
universally-accepted definition of N. Some mathematicians treat O as a natural number, while others do not.
Thus you may find that some authors consider

N={01,2,3,...}
while others treat N as
N={1,2,3,...}
For the purposes of this course, we will treat 0 as a natural number, so
* the smallest natural number is 0, and (appropriately)

e 0O0eN.

In some cases we may want to consider the set of natural numbers other than zero. We denote this set N,

The set of positive natural numbers N7 is the set N* = {1, 2, 3, ...}

Thus 137 € N, but 0 ¢ N+.

There are other important sets that arise frequently in mathematics and that will appear from time to time in
our exploration of the mathematical foundations of computing. We should consider the set of real numbers,
numbers representing arbitrary measurements. For example, you might be 1.7234 meters tall, or weigh
70.22 kilograms. Numbers like m and e are real numbers, as are numbers like the square root of two. The
set of all real numbers is so important in mathematics that we give it a special symbol.

The set of all real numbers is denoted R.

The sets N, Z, and R are all quite different from the other sets we've seen so far in that they contain in -
finitely many elements. We will return to this topic later, but we do need one final pair of definitions:

A finite set is a set containing only finitely many elements. An infinite set is a set containing infin-
itely many elements.

1.4 Set-Builder Notation

1.4.1 Filtering Sets

So far, we have seen how to use the primitive set operations (union, intersection, difference, and symmetric
difference) to combine together sets into other sets. However, more commonly, we are interested in defining
a set not by combining together existing sets, but by gathering together all objects that share some common
property. It would be nice, for example, to be able to just say something like “the set of all even numbers”
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or “the set of legal Java programs.” For this, we have a tool called set-builder notation which allows us to de-
fine a set by describing some property common to all of the elements of that set.

Before we go into a formal definition of set-builder notation, let's see some examples. First, here's how we
might define the set of even natural numbers:

{nlneNandniseven }

You can read this aloud as “the set of all n, where n is a natural number and # is even.” Similarly, we could
define the set of positive real numbers like this:

{xlxeRandx>0}
This would be read as “the set of all x, where x is a real number and x is greater than 0.”
Leaving the realm of pure mathematics, we could also consider a set like this one:
{ plpisalegal Java program }
If you'll notice, each of these sets is defined using the following pattern:
{ variable | conditions on that variable }

Let's dissect each of the above sets one at a time to see what they mean and how to read them. First, we de-
fined the set of even natural numbers this way:

{nlneNandniseven }

Here, this definition says that this is the set formed by taking every choice of n where n € N (that is, n is a
natural number) and 7 is even. Consequently, this is the set {0, 2,4, 6, 8, ...}.

The set
{xlxeRand x>0}

can similarly be read off as “the set of all x where x is a real number and x is greater than zero,” which filters
the set of real numbers down to just the positive real numbers.

Of the sets listed above, this set was the least mathematically precise:
{ plpisalegal Java program }

However, it's a perfectly reasonable way to define a set: we just gather up all the legal Java programs (of
which there are infinitely many) and put them into a single set.

When using set-builder notation, the name of the variable chosen does not matter. This means that all of the
following are equivalent to one another:

{xlxeRand x>0}
{ylyeRandy>0}
{zlzeRand z>0 }

Using set-builder notation, it's actually possible to define many of the special sets from the previous section
in terms of one another. For example, we can define the set N as follows:

N={xlxeZandx=>0}

That is, the set of all natural numbers (N) is the set of all x such that x is an integer and x is nonnegative.
This precisely matches our intuition about what the natural numbers ought to be. Similarly, we can define
the set N* as
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N*={nlneNandn+0}
Since this describes the set of all n such that » is a nonzero natural number.

So far, all of the examples above with set-builder notation have started with an infinite set and ended with an
infinite set. However, set-builder notation can be used to construct finite sets as well. For example, the set

{nlneN,niseven, and n < 10 }
has just five elements: 0, 2, 4, 6, and 8.

To formalize our definition of set-builder notation, we need to introduce the notion of a predicate:

A predicate is a statement about some object x that is either true or false.

For example, the statement “x < 0” is a predicate that is true if x is less than zero and false otherwise. The
statement “x is an even number” is a predicate that is true if x is an even number and is false otherwise. We
can build far more elaborate predicates as well — for example, the predicate “p is a legal Java program that
prints out a random number” would be true for Java programs that print random numbers and false other-
wise. Interestingly, it's not required that a predicate be checkable by a computer program. As long as a
predicate always evaluates to either true or false — regardless of how we'd actually go about verifying which
of the two it was — it's a valid predicate.

Given our definition of a predicate, we can formalize the definition of set-builder notation here:

The set { x | P(x) } is the set of all x such that P(x) is true.

It turns out that allowing us to define sets this way can, in some cases, lead to paradoxical sets, sets that can-
not possibly exist. We'll discuss this later on when we talk about Russell's Paradox. However, in practical
usage, it's almost universally safe to just use this simple set-builder notation.

1.4.2 Transforming Sets

You can think of this version of set-builder notation as some sort of filter that is used to gather together all
of the objects satisfying some property. However, it's also possible to use set-builder notation as a way of
applying a transformation to the elements of one set to convert them into a different set. For example, sup-
pose that we want to describe the set of all perfect squares — that is, natural numbers like 0 = 0%, 1 = 17,
4=2%9=23% 16 =4% etc. Using set-builder notation, we can do so, though it's a bit awkward:

{ n | there is some m € N such that n = m?* }

That is, the set of all numbers n where, for some natural number m, n is the square of m. This feels a bit
awkward and forced, because we need to describe some property that's shared by all the members of the set,
rather than the way in which those elements are generated. As a computer programmer, you would probably
be more likely to think about the set of perfect squares more constructively by showing how to build the set
of perfect squares out of some other set. In fact, this is so common that there is a variant of set-builder no-
tation that does just this. Here's an alternative way to define the set of all perfect squares:

{n*lneN}
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This set can be read as “the set of all n*>, where 7 is a natural number.” In other words, rather than building
the set by describing all the elements in it, we describe the set by showing how to apply a transformation to
all objects matching some criterion. Here, the criterion is “n is a natural number,” and the transformation is

“compute n*.”

As another example of this type of notation, suppose that we want to build up the set of the numbers 0, ¥2,
1,°/, 2,1, etc. out to infinity. Using the simple version of set-builder notation, we could write this set as

{ x| there is some n € N such that x=n/2 }

That is, this set is the set of all numbers x where x is some natural number divided by two. This feels forced,
and so we might use this alternative notation instead:

{n/2lneN}

That is, the set of numbers of the form n / 2, where n is a natural number. Here, we fransform the set N by
dividing each of its elements by two.

It's possible to perform transformations on multiple sets at once when using set-builder notation. For exam-
ple, let's let the set A = {1, 2, 3} and the set B = {10, 20, 30}. Then consider the following set:

C={a+blacAandbe B}

This set is defined as follows: for any combination of an element a € A and an element b € B, the set C con-
tains the number a + b. For example, since 1 € A and 10 € B, the number 1 + 10 = 11 must be an element
of C. It turns out that since there are three elements of A and three elements of B, there are nine possible
combinations of those elements:

10 20 30
11 21 31
12 22 32
13 23 33

This means that our set C is

C={a+blacAandbeB}={11,12,13,21,22,23,31,32,33 }
1.5 Relations on Sets

1.5.1 Set Equality

We now have ways of describing collections and of forming new collections out of old ones. However, we
don't (as of yet) have a way of comparing different collections. How do we know if two sets are equal to
one another?

As mentioned earlier, a set is an unordered collection of distinct elements. We say that two sets are equal if
they have exactly the same elements as one another.
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If A and B are sets, then A = B precisely when they have the same elements as one another. This defi-
nition is sometimes called the axiom of extensionality.

For example, under this definition, {1, 2, 3} = {2, 3, 1} = {3, 1, 2}, since all of these sets have the same ele -
ments. Similarly, {1} = {1, 1, 1}, because both sets have the same elements (remember that a set either
contains something or it does not, so duplicates are not allowed). This also means that

N={xlxeZandx2>0 }

since the sets have the same elements. It is important to note that the manner in which two sets are de-
scribed has absolutely no bearing on whether or not they are equal; all that matters is what the two sets con-
tain. In other words, it's not what's on the outside (the description of the sets) that counts; it's what's on the
inside (what those sets actually contain).

Because two sets are equal precisely when they contain the same elements, we can get a better feeling for
why we call @ the empty set as opposed to an empty set (that is, why there's only one empty set, as opposed
to a whole bunch of different sets that are all empty). The reason for this is that, by our definition of set
equality, two sets are equal precisely when they contain the same elements. This means that if you take any
two sets that are empty, they must be equal to one another, since they contain the same elements (namely,
no elements at all).

1.5.2 Subsets and Supersets

Suppose that you're organizing your music library. You can think of one set M as consisting of all of the
songs that you own. Some of those songs are songs that you actually like to listen to, which we could denote
F for “Favorite.” If we think about the relationship between the sets M and F you can quickly see that M
contains everything that F contains, since M is the set of all songs you own while F is only your favorite
songs. It's possible that F' = M, if you only own your favorite songs, but in all likelihood your music library
probably contains more songs than just your favorites. In this case, what is the relation between M and F?
Since M contains everything that F does, plus (potentially) quite a lot more, we say that M is a superset of F.
Conversely, F'is a subset of M. We can formalize these definitions below:

A set A is a subset of another set B if every element of A is also contained in B. In other words, A is
a subset of B precisely if every time x € A, then x € Biis true. If A is a subset of B, we write A C B.

If A C B (thatis, A is a subset of B), then we say that B is a superset of A. We denote this by writing
B2 A.

For example, {1, 2} ¢ {1, 2, 3}, since every element of {1, 2} is also an element of {1, 2, 3}; specifically,
1e{l,2,3}and 2 € {1, 2, 3}. Also, {4, 5, 6} 2 {4} because every element of {4} is an element of the
set{4, 5, 6}, since 4 € {4, 5, 6}. Additionally, we have that N C Z, since every natural number is also an in-
teger, and Z C R, since every integer is also a real number.

Given any two sets, there's no guarantee that one of them must be a subset of the other. For example, con-
sider the sets {1, 2, 3} and {cat, dog, ibex}. In this case, neither set is a subset of the other, and neither set
is a superset of the other.
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By our definition of a subset, any set A is a subset of itself, because it's fairly obviously true that every ele-
ment of A is also an element of A. For example, {cat, dog, ibex} C {cat, dog, ibex} because cat € {cat, dog,
ibex}, dog € {cat, dog, ibex}, and ibex € {cat, dog, ibex}. Sometimes when talking about subsets and su-
persets of a set A, we want to exclude A itself from consideration. For this purpose, we have the notion of a
strict subset and strict superset:

A set A is a strict subset of Bif A C Band A # B. If A is a strict subset of B, we denote this by writ-
ing A C B.

If A c B, we say that B is a strict superset of A. In this case, we write B D 4.

For example, {1, 2} c {1, 2, 3} because {1, 2} € {1, 2, 3} and {1, 2} # {1, 2, 3}. However,
{1, 2, 3} is not a strict subset of itself.

1.5.2.1 The Empty Set and Vacuous Truths

How does the empty set @ interact with subsets? Consider any set S. Is the empty set a subset of S? Recall
our definition of subset:

A C B precisely when every element of A is also an element of B.

The empty set doesn't contain any elements, so how does it interact with the above claim? If we plug @ and
the set S into the above, we get the following:

@ c Sif every element of @ is an element of S.

Take a look at that last bit - “if every element of @ is an element of S.” What does this mean here? After
all, there aren't any elements of @, because @ doesn't contain any elements! Given this, is the above state -
ment true or false? There are two ways we can think about this:

1. Since @ contains no elements, the claim “every element of @ is an element of S” is false, because
we can't find a single example of an element of @ that is contained in S.

2. Since @ contains no elements, the claim “every element of @ is an element of S” is true, because we
can't find a single example of an element of @ that isn't contained in S.

So which line of reasoning is mathematically correct? It turns out that it's the second of these two ap-
proaches, and indeed it is true that @ € S. To understand why, we need to introduce the idea of a vacuous
truth. Informally, a statement is vacuously true if it's true simply because it doesn't actually assert anything.
For example, consider the statement “if I am a dinosaur, then the moon is on fire.” This statement is com -
pletely meaningless, since the statement “I am a dinosaur” is false. Consequently, the statement “if I am a
dinosaur, then the moon is on fire” doesn't actually assert anything, because I'm not a dinosaur. Similarly,
consider the statement “if 1 = 0, then 3 = 5.” This too doesn't actually assert anything, because we know
that 1 # 0.

Interestingly, mathematically speaking, the statements “if I am a dinosaur, then the moon is on fire” and “if
1 =0, then 3 = 5” are both considered true statements! They are called vacuously true because although
they're considered true statements, they're meaningless true statements that don't actually provide any new
information or insights. More formally:
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The statement “if P, then Q” is vacuously true if P is always false.

There are many reasons to argue in favor of or against vacuous truths. As you'll see later on as we discuss
formal logic, vacuous truth dramatically simplifies many arguments and makes it possible to reason about
large classes of objects in a way that more naturally matches our intuitions. That said, it does have its idio-
syncrasies, as it makes statements that might seem meaningless, such as “if 1 = 0, then 5 = 3” true. (That
said, that previous statement actually does make sense — if you believe that 1 = 0, then you can multiply both
sides by two to get that 2 = 0, and can then add three to both sides to get that 5 = 3.)

Let's consider another example: Are all unicorns pink? Well, that's an odd question — there aren't any uni-
corns in the first place, so how could we possibly know what color they are? But, if you think about it, the
statement “all unicorns are pink” should either be true or false.” Which one is it? One option would be to
try rewriting the statement “all unicorns are pink” in a slightly different manner — instead, let's say “if x is a
unicorn, then x is pink.” This statement conveys exactly the same idea as our original statement, but is
phrased as an “if ... then” statement. When we write it this way, we can think back to the definition of a
vacuous truth. Since the statement “x is a unicorn” is never true — there aren't any unicorns! — then the state-
ment “if x is a unicorn, then x is pink” ends up being a true statement because it's vacuously true. More gen-
erally:

The statement “Every X has property Y” is (vacuously) true if there are no X's.

Let's return to our original question: is @ a subset of any set $? Recall that @ is a subset of S if every ele-
ment of @ is also an element of S. But the statement “every element of @ is an element of S~ is vacuously
true, because there are no elements of @! As a result, we have that

For any set S, @ C S.

This means that @ C {1, 2, 3}, @ C {cat, dog, ibex}, @ C N, and even @ C @.

1.6 The Power Set

Given any set S, we know that some sets are subsets of S (there's always at least @ as an option), while others
are not. For example, the set {1, 2} has four subsets:

* (@, which is a subset of every set,
* {1
e {2}, and

* {1, 2}, since every set is a subset of itself.

In case you're thinking “but it could be neither true nor false!,” you are not alone! At the turn of the 20" century, a branch of logic arose called
intuitionistic logic that held as a tenet that not all statements are true or false — some might be neither. In intuitionistic logic, there is no concept
of a vacuous truth, and statements like “if I am a dinosaur, then the moon is on fire” would simply neither be true nor false. Intuitionistic logic
has many applications in computer science, but has generally fallen out of favor in the mathematical community.
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We know that sets can contain other sets, so we may want to think about the set that contains all four of
these subsets as elements. This is the set

{9, {1}, {2}, {1,2}}

More generally, we can think about taking an arbitrary set S and listing off all its subsets. For example, the
subsets of {1, 2, 3} are

{1} {1,2}
%) {2} {1, 3} {1,2,3}
{3} {2, 3}

Note that there are eight subsets here. The subsets of {1, 2, 3,4} are

{1,2}
{1} {1, 3} {1, 2,3}
& {2} {1, 4} {1,2,4} (1.2.3.4)
{3} {2,3} {1,3,4}
{4} {2, 4} {2,3.4}
{3.4}

Note that there are 16 subsets here. In some cases there may be infinitely many subsets — for instance, the
set N has subsets @, then infinitely many subsets with just one element ({0}, {1}, {2}, etc.), then infinitely
many subsets with just two elements ({0, 1}, {0, 2}, ..., {1, 2}, {1, 3}, etc.), etc., and even an infinite num-
ber of subsets with infinitely many elements (this is a bit weird, so hold tight... we'll get there soon!) In fact,
there are so many subsets that it's difficult to even come up with a way of listing them in any reasonable or -
der! We'll talk about why this is toward the end of this chapter.

Although a given set may have a lot of subsets, for any set S we can talk about the set of all subsets of S.
This set, called the power set, has many important applications, as we'll see later on. But first, a definition is
in order.

The power set of a set S, denoted £(S), is the set of all subsets of S.

For example, g2({1, 2}) = {@, {1}, {2}, {1, 2}}, since those four sets are all of the subsets of {1, 2}.

We can write out a formal mathematical definition of (S) using set-builder notation. Let's see how we
might go about doing this. We can start out with a very informal definition, like this one:

§(8) = “The set of all subsets of §”

Now, let's see how we might rewrite this in set-builder notation. First, it might help to rewrite our informal
statement “The set of all subsets of $” in a way that's more amenable to set-builder notation. Since set-
builder notation has the form { variable | conditions }, we might want to take the information statement “The
set of all subsets of S” like this:

§2(S) = “The set of all T, where T is a subset of S.”
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Introducing this new variable 7 makes the English a bit more verbose, but makes it easier to convert the
above into a nice statement in set-builder notation. In particular, we can translate the above from English to
set-builder notation as

9(S)={ T Tisasubset of S}

Finally, we can replace the English “is a subset of” with our € symbol, which means the same thing but is
more mathematically precise. Consequently, we could define the power set in set-builder notation as fol-
lows:

PO ={TITCS}

What is g2(@)? This would be the set of all subsets of @, so if we can determine all these subsets, we could
gather them together to form g(@). We know that @ C @, since the empty set is a subset of every set. Are
there any other subsets of @? The answer is no. Any set S other than @ has to have at least one element in
it, meaning that it can't be a subset of @, which has no elements in it. Consequently, the only subset of @ is
@. Since the power set of @ is the set of all of @'s subsets, it's the set containing @. In other words, we

have (0) = {D}.

Note that {@} and @ are not the same set. The first of these sets contains one element, which is the empty
set, while the latter contains nothing at all. This means that (@) # .

The power set is a mathematically interesting object, and its existence leads to an extraordinary result called
Cantor's Theorem that we will discuss at the end of this chapter.

1.7 Cardinality

1.7.1 What is Cardinality?

When working with sets, it's natural to ask how many elements are in a set. In some cases, it's easy to see:
for example, {1, 2, 3, 4, 5} contains five elements, while @ contains none. In others, it's less clear — how
many elements are in N, Z, or R for example? How about the set of all perfect squares? In order to discuss
how “large” a set is, we will introduce the notion of set cardinality:

The cardinality of a set is a measure of the size of the set. We denote the cardinality of set A as IAl

Informally, the cardinality of a set gives us a way to compare the relative sizes of various sets. For example,
if we consider the sets {1, 2, 3} and {cat, dog, ibex}, while neither set is a subset of the other, they do have
the same size. On the other hand, we can say that N is a much, much bigger set than either of these two
sets.

The above definition of cardinality doesn't actually say how to find the cardinality of a set. It turns out that
there is a very elegant definition of cardinality that we will introduce in a short while. For now, though, we
will consider two cases: the cardinalities of finite sets, and the cardinalities of infinite sets.

For finite sets, the cardinality of the set is defined simply:

The cardinality of a finite set is the number of elements in that set.
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For example:
c 101=0
e {7} 1=1
* | {cat, dog, ibex} | =3
* I{nlneN,n<10}1=10

Notice that the cardinality of a finite set is always an integer — we can't have a set with, say, three-and-a-half
elements in it. More specifically, the cardinality of a finite set is a natural number, because we also will
never have a negative number of elements in a set; what would be an example of a set with, say, negative
four elements in it?

The natural numbers are often used precisely because they can be used to count things, and when we use the
natural numbers to count how many elements are in a set, we often refer to them as “finite cardinalities,”
since they are used as cardinalities (measuring how many elements are in a set), and they are finite. In fact,
one definition of N is as the set of finite cardinalities, highlighting that the natural numbers can be used to
count.

When we work with infinite cardinalities, however, we can't use the natural numbers to count up how many
elements are in a set. For example, what natural number is equal to INI? Tt turns out that saying “infinity”
would be mathematically incorrect here. Mathematicians don't tend to think of “infinity” as being a number
at all, but rather a limit toward which a series of numbers approaches. As you count up 0, 1, 2, 3, etc. you
tend toward infinity, but you can never actually reach it.

If we can't assign a natural number to the cardinality of N, then what can we use? In order to speak about
the cardinality of an infinite set, we need to introduce the notion of an infinite cardinality. The infinite cardi-
nalities are a special class of values that are used to measure the size of infinitely large sets. Just as we can
use the natural numbers to measure the cardinalities of finite sets, the infinite cardinalities are designed
specifically to measure the cardinality of infinite sets.

“Wait a minute... infinite cardinalities? You mean that there's more than one of them?” Well... yes. Yes
there are. In fact, there are many different infinite cardinalities, and not all infinite sets are the same size.
This is a hugely important and incredibly counterintuitive result from set theory, and we'll discuss it later in
this chapter.

So what are the infinite cardinalities? We'll introduce the very first one here:

2

The cardinality of N is &y, pronounced “aleph-nought,
|N| = &0.

aleph-zero,” or “aleph-null.” That is,

In case you're wondering what the strange & symbol is, this is the letter “aleph,” the first letter of the Hebrew
alphabet. The mathematician who first developed a rigorous definition of cardinality, Georg Cantor, used
this and several other Hebrew letters in the study of set theory, and the notation persists to this day.”

To understand the sheer magnitude of the value implied by &y, you must understand that this infinite cardi-
nality is bigger than all natural numbers. If you think of the absolute largest thing that you've ever seen, it is
smaller than Xy. R is bigger than anything ever built or that ever could be built.

*  The Hebrew letter X is one of the oldest symbols used in mathematics. It predates Hindu-Arabic numerals — the symbols O, 1, 2, ..., 9 — by at
least five hundred years.
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1.7.2 The Difficulty With Infinite Cardinalities

With Ry, we have a way of talking about INI, the number of natural numbers. However, we still don't have
an answer to the following questions:

*  How many integers are there (what is IZI)?
*  How many real numbers are there (what is IRI1)?

* How many natural numbers are there that are squares of another number (that is, what is
I {n*lneN }I)?

All of these quantities are infinite, but are they all equal to %? Or is the cardinality of these sets some other
value?

At first, it might seem that the answer to this question would be that all of these values are R, since all of
these sets are infinite! However, the notion of infinity is a bit trickier than it might initially seem. For exam-
ple, consider the following thought experiment. Suppose that we draw a line of some length, like this one
below:

How many points are on this line? There are infinitely many, because no matter how many points you pick,
I can always pick a point in-between two adjacent points you've drawn to get a new point. Now, consider
this other line:

How many points are on this line? Well, again, it's infinite, but it seems as though there should be “more”
points on this line than on the previous one! What about this square:

It seems like there ought to be more points in this square than on either of the two lines, since the square is
big enough to hold infinitely many copies of the longer line.

So what's going on here? This question has interesting historical significance. In 1638, Galileo Galilei pub-
lished Two New Sciences, a treatise describing a large number of important results from physics and a few
from mathematics. In this work, he looked at an argument very similar to the previous one and concluded
that the only option was that it makes no sense to talk about infinities being greater or lesser than any other
infinity. [Gal] About 250 years later, Georg Cantor revisited this topic and came to a different conclusion —
that there is no one “infinity,” and that there are infinite sets that are indeed larger or smaller than one an-
other! Cantor's argument is now part of the standard mathematical canon, and the means by which he ar-
rived at this conclusion have been used to prove numerous other important and profoundly disturbing mathe -
matical results. We'll touch on this line of reasoning later on.
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1.7.3 A Formal Definition of Cardinality

In order for us to reason about infinite cardinalities, we need to have some way of formally defining cardinal-
ity, or at least to rank the cardinalities of different sets. We'll begin with a way of determining whether two
sets have the same number of elements in them.

Intuitively, what does it mean for two sets to have the same number of elements in them? This seems like
such a natural concept that it's actually a bit hard to define. But in order to proceed, we'll have to have some
way of doing it. The key idea is as follows — if two sets have the same number of elements in them, then we
should be able to pair up all of the elements of the two sets with one another. For example, we might say
that {1, 2, 3} and {cat, dog, ibex} have the same number of elements because we can pair the elements as
follows:

1 & cat
2 > dog
3 < ibex

However, the sets {1, 2, 3} and {cat, dog, ibex, llama} do not have the same number of elements, since no
matter how we pair off the elements there will always be some element of {cat, dog, ibex, llama} that isn't
paired off. In other words, if two sets have the same cardinality, then we can indeed pair off all their ele-
ments, and if one has larger cardinality than the other, we cannot pair off all of the elements. This gives the
following sketch of how we might show that two sets are the same size:

Two sets have the same cardinality if the elements of the sets can be paired off with one another with
no elements remaining.

Now, in order to formalize this definition into something mathematically rigorous, we'll have to find some
way to pin down precisely what “pairing the elements of the two sets” off means. One way that we can do
this is to just pair the elements off by hand. However, for large sets this really isn't feasible. As an example,
consider the following two sets:

Even={nlneN and nis even }
Odd={nlneNandnisodd }

Intuitively, these sets should be the same size as one another, since half of the natural numbers are even and
half are odd. But using our idea of pairing up all the elements, how would we show that the two have the
same cardinality? One idea might be to pair up the elements like this:

01
23
45
67

More generally, given some even number n, we could pair it with the odd number n + 1. Similarly, given
some odd number 7, we could pair it with the even number n — 1. But does this pair off all the elements of
both sets? Clearly each even number is associated with just one odd number, but did we remember to cover
every odd number, or is some odd number missed? It turns out that we have covered all the odd numbers,
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since if we have the odd number n, we just subtract one to get the even number n — 1 that's paired with it.
In other words, this way of pairing off the elements has these two properties:

1. Every element of Even is paired with a different element of Odd.
2. Every element of Odd has some element of Even paired with it.

As a result, we know that all of the elements must be paired off — nothing from Even can be uncovered be-
cause of (1), and nothing from Odd can be uncovered because of (2). Consequently, we can conclude that
the cardinality of the even numbers and odd numbers are the same.

We have just shown that |Even| = 10dd|, but we still don't actually know what either of these values happen
to be! In fact, we only know of one infinite cardinality so far: Ry, the cardinality of N. If we can try finding
some way of relating & to |Even| or 10dd|, then we would know the cardinalities of these two sets.

Intuitively, we would have that there are twice as many natural numbers as even numbers and twice as many
natural numbers as odd numbers, since half the naturals are even and half the naturals are odd. As a result,
we would think that, since there are “more” natural numbers than even or odd numbers, that we would have
that |Evenl < INl = R. But before we jump to that conclusion, let's work out the math and see what happens.
We either need to find a way of pairing off the elements of Even and N, or prove that no such pairing exists.

Let's see how we might approach this. We know that the set of even numbers is defined like this:
Even={nlneN and niseven }
But we can also characterize it in a different way:
Even={2nlneN}

This works because every even number is two times some other number — in fact, some authors define it this
way. This second presentation of Even is particularly interesting, because it shows that we can construct the
even numbers as a transformation of the natural numbers, with the natural number n mapping to 2n. This
actually suggests a way that we might try pairing off the even natural numbers with the natural numbers —
just associate n with 2n. For example:

00
12
24
36
48

Wait a minute... it looks like we've just provided a way to pair up all the natural numbers with just the even
natural numbers! That would mean that |Evenl = INI! This is a pretty impressive claim, so before we con-
clude this, let's double-check to make sure that everything works out.

First, do we pair each natural number with a unique even number? In this case, yes we do, because the
number # is mapped to 2n, so if we take any two natural numbers n and m with n # m, then they map to 2n
and 2m with 2n # 2m. This means that no two natural numbers map to the same even number.

Second, does every even number have some natural number that maps to it? Absolutely — just divide that
even number by two.
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At this point we're forced to conclude the seemingly preposterous claim that there are the same number of
natural numbers and even numbers, even though it feels like there should be twice as many! But despite our
intuition rebelling against us, this ends up being mathematically correct, and we have the following result:

Theorem: |[Even| = |Odd| = IN| = &,

This example should make it clear just how counterintuitive infinity can be. Given two infinite sets, one
of which seems like it ought to be larger than the other, we might end up actually finding that the two sets
have the same cardinality!

It turns out that this exact same idea can be used to show that the two line segments from earlier on have
exactly the same number of points in them. Consider the ranges (0, 1) and (0, 2), which each contain in-
finitely many real numbers. We will show that |(0, 1)| =|(0, 2)| by finding a way of pairing up all the ele-
ments of the two sets. Specifically, we can do this by pairing each element x in the range |[(0, 1)| with the
element 2x in |(0, 2)|. This pairs every element of (0, 1) with a unique element of (0, 2), and ensures that
every element z € (0, 2) is paired with some real number in (0, 1) (namely, z / 2). So, informally, dou-
bling an infinite set doesn't make the set any bigger. It still has the same (albeit infinite) cardinality.

Let's do another example, one which is attributed to Galileo Galilei. A natural number is called a perfect
square if it is the square of some natural number. For example, 16 = 4* and 25 = 5% are perfect squares, as
are 0, 1, 100, and 144. Now, consider the set of all perfect squares, which we'll call Squares:

Squares = { n|n € N and n is a perfect square }

These are the numbers 0, 1, 4, 9, 16, 25, 36, etc. An interesting property of the perfect squares is that as
they grow larger and larger, the spacing between them grows larger and larger as well. The space be-
tween the first two perfect squares is 1, between the second two is 3, between the third two is 5, and more
generally between the nth and (n + 1)st terms is 2z + 1. In other words, the perfect squares become more
and more sparse the further down the number line you go.

It was pretty surprising to see that there are the same number of even natural numbers as natural numbers,
since intuitively it feels like there are twice as many natural numbers as even natural numbers. In the case
of perfect squares, it seems like there should be substantially fewer perfect squares than natural numbers,
because the perfect squares become increasing more rare as we go higher up the number line. But even
so, we can find a way of pairing off the natural numbers with the perfect squares by just associating »
with n*:

00
11
24
39
416

This associates each natural number »n with a unique perfect square, and ensures that each perfect square
has some natural number associated with it. From this, we can conclude that

Theorem: The cardinality of the set of perfect squares is Ry.
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This is not at all an obvious or intuitive result! In fact, when Galileo discovered that there must be the
same number of perfect squares and natural numbers, his conclusion was that the entire idea of infinite
quantities being “smaller” or “larger” than one another was nonsense, since infinite quantities are infinite
quantities.

We have previously defined what it means for two sets to have the same size, but interestingly enough we
haven't defined what it means for one set to be “bigger” or “smaller” than another. The basic idea behind
these definitions is similar to the earlier definition based on pairing off the elements. We'll say that one
set is no bigger than some other set if there's a way of pairing off the elements of the first set and the sec-
ond set without running out of elements from the second set. For example, the set {1, 2} is no bigger than
{a, b, ¢} because we can pair the elements as

lea
2eb

Note that we're using the term “is no bigger than” rather than “is smaller than,” because it's possible to
perfectly pair up the elements of two sets of the same cardinality. All we know is that the first set can't be
bigger than the second, since if it were we would run out of elements from the second set.

We can formalize this here:

If A and B are sets, then |Al < |BI precisely when each element of A can be paired off with a unique
element from B.

If 1Al < |Bl and |Al # |Bl, then we say that |Al < |BI.

From this definition, we can see that IN| < R (that is, there are no more natural numbers than there are real
numbers) because we can pair off each natural number with itself. We can use similar logic to show that IZI
< IR, since there are no more integers than real numbers.

1.8 Cantor's Theorem

In the previous section when we defined cardinality, we saw numerous examples of sets that have the same
cardinality as one another. Given this, do all infinite sets have the same cardinality? It turns out that the an-
swer is “no,” and in fact there are infinite sets of differing cardinalities. A hugely important result in estab-
lishing this is Cantor's Theorem, which gives a way of finding infinitely large sets with different cardinalities.

As you will see, Cantor's theorem has profound implications beyond simple set theory. In fact, the key idea
underlying the proof of Cantor's theorem can be used to show, among other things, that

1. There are problems that cannot be solved by computers, and
2. There are true statements that cannot be proven.

These are huge results with a real weight to them. Let's dive into Cantor's theorem to see what they're all
about.

1.8.1 How Large is the Power Set?

If you'll recall, the power set of a set S (denoted (S)) is the set of all subsets of S. As you saw before, the
power set of a set can be very, very large. For example, the power set of {1, 2, 3, 4} has sixteen elements.
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The power set of {1, 2,3,4,5,6,7,8,9, 10} has over a thousand elements, and the power set of a set with
one hundred elements is so huge that it could not be written out on all the sheets of paper ever printed.

For finite sets, we can show that |@(S)| = 2, meaning that the power set is exponentially larger than the orig-
inal set. We'll formally prove this later on in this book, but for now we can argue based on the following in-
tuition. In each subset of S, every element of S is either present or it isn't. This gives two options for each
element of the set. Given any combination of these yes/no answers, we can form some subset of S. So how
many combinations are there? Let's line up all the elements in some order. There are two options for the
first element, two options for the second, etc. all the way up to the very last element. Since each decision is
independent of one another, the number of options ends up being 2 x 2 x ... x 2 =2". Interestingly, we can
visualize the subsets as being generated this way. For example, given the set {a, b, c}, the subsets are

a b c Result
Yes Yes Yes {a, b, ¢}
Yes Yes No {a, b}
Yes No Yes {a, c}
Yes No No {a}
No Yes Yes {b, c}
No Yes No {b}
No No Yes {c}
No No No %)

In summary, we can conclude the following:

Theorem: If S is a finite set, IS < [(S)l, since |@(S)I = 2°.

This is the first time we've found some operation on sets that produces a set that always has strictly greater
cardinality than the original set.

Does this result extend to infinite sets? That is, is it always true that ISl < §(S)I? We might be tempted to
think so based on our analysis of the finite case, but as we've shown before our intuition about the sizes of
infinite sets is often wrong. After all, there's the same number of even natural numbers as natural numbers,
even though only half the natural numbers are even!

Let's take a minute to outline what we would need to do to prove whether or not this is true. Since this re-
sult will have to hold true for all infinite sets, we would need to show that any infinite set, whether it's a set
of natural numbers, a set of strings, a set of real numbers, a set of other sets, etc., always has fewer elements
than its power set. If this result is false, we just need to find a single counterexample. If there is any set S
with IS = 1go(S)I, then we can go home and say that the theorem is false. (Of course, being good mathemati -
cians, we'd then probably go ask for which sets the theorem is true!) Amazingly, it turns out that ISl < |
()|, and the proof is a truly marvelous idea called Cantor's diagonal argument.

1.8.2 Cantor's Diagonal Argument

Cantor's diagonal argument is based on a beautiful and simple idea. We will prove that ISl < ¢(S)| by show-
ing that no matter what way you try pairing up the elements of S and (S), there is always some element of
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§(S) (that is, a subset of S) that wasn't paired up with anything. To see how the argument works, we'll see
an example as applied to a simple finite set. We already know that the power set of this set must be larger
than the set itself, but by seeing the diagonal argument in action in a concrete case it will make clearer just
how powerful the argument is.

Let's take the simple set {a, b, ¢}, whose power set is { @, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }.
Now, remember that two sets have the same cardinality if there's a way of pairing up all of the elements of
the two sets. Since we know for a fact that the two sets don't have the same cardinality, there's no possible
way that we can do this. However, we know this only because we happen to already know the sizes of the
two sets. In other words, we know that there must be at least one subset of {a, b, c} that isn't paired up, but
without looking at all of the elements in the pairing we can't necessarily find it. The diagonal argument gives
an ingenious way of taking any alleged pairing of the elements of S and its power set and producing some set
that is not paired up. To see how it works, let's begin by considering some actual pairing of the elements of
{a, b, ¢} and its power set; for example, this one:

a o {a, b}
beo @
ce {a,c}

Now, since each subset corresponds to a set of yes/no decisions about whether each element of {a, b, c} is
included in the subset, we can construct a two-dimensional grid like this one below:

a? b? c?
a paired with Y Y N
b paired with N N N
¢ paired with Y N Y

Here, each row represents the set that each element of {a, b, c} is paired with. The first row shows that a is
paired with the set that contains a, contains b, but doesn't contain c, namely {a, b} (indeed, a is paired with
this set). Similarly, b is paired with the set that doesn't contain a, b, or ¢, which is the empty set. Finally, ¢
is paired with the set containing a and ¢ but not b: {a, c}.

Notice that this grid has just as many rows as it has columns. This is no coincidence. Since we are pairing
the elements of the set {a, b, ¢} with subsets of {a, b, ¢}, we will have one row for each of the elements of
{a, b, c} (representing the pairing between each element and some subset) and one column for each of the
elements of {a, b, ¢} (representing whether or not that element appears in the paired set). As a result, we
can take a look at the main diagonal of this matrix, which runs from the upper-left corner to the lower-right
corner. This is highlighted below:

a? b? c?
a paired with Y Y N
b paired with N N N
¢ paired with Y N Y

Notice that this diagonal has three elements, since there are three rows and three columns (representing the
three elements of the set). This means that the diagonal, as a series of Y's and N's, can potentially be inter-
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preted as a subset of {a, b, c}! In this case, since it includes a, excludes b, and includes c, then it would cor -
respond to the set {a, c}. This set might already be paired with some element (in this case, it is — it's paired
with c), though it doesn't have to be.

Cantor's brilliant trick is the following: suppose that we complement the diagonal of this matrix. That is,
we'll take the diagonal and flip all the Y's to N's and N's to Y's. In the above case, this gives the following:

a? b? c?

a paired with Y Y N

b paired with N N N

c paired with Y N Y
Complemented Diagonal N Y N

This complemented diagonal represents some subset of {a, b, c}. In this case, it's the set {b}. Now, does
this set appear anywhere in the table? It turns out that we can guarantee that this set isn't paired with any-
thing. Here's why. Let's look at the first row of the table. This row can't be the set {b}, because this row
and the complemented diagonal disagree at their first position (the first row has a Y, the complemented diag-
onal has an N). So let's look at the second row. This row can't be the set {b} because it disagrees in the
second position — there's an N in the second spot of the second row and a Y in the second spot of the com -
plemented diagonal. Similarly, the third row disagrees in the third position, because there's a Y in the third
spot of the third row and an N in the third spot of the complemented diagonal.

The deviousness of complementing the diagonal lies in the fact that we have specifically crafted a set that
can't be paired with anything. The reason for this is as follows:

1. Consider any row 7 in the table.
2. That row can't be equal to the complemented diagonal, because it disagrees in the nth position.
3. Consequently, no row in the table is equal to the complemented diagonal.

Since the rows of the table represent all of the subsets paired with the elements of {a, b, c}, the fact that
none of the rows are equal to the complemented diagonal guarantees us that the set represented by the com-
plemented diagonal cannot possibly be paired up with any of the elements of the set! In other words, this
diagonal argument gives us a way to take any pairing of the elements of {a, b, c} and its subsets and produc-
ing at least one subset that wasn't paired up. To see this argument in action again, here's another pairing:

ao {a}
b« {b}
c o {a, b}

This gives the following table and complemented diagonal:
a? b? c?
a paired with Y N N
b paired with N Y N
c paired with Y Y N
Complemented Diagonal N N Y
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The complemented diagonal here is {c}, which is missing from the table.

If we didn't already know that the power set of {a, b, c} was bigger than the set {a, b, c}, this diagonal argu-
ment would have just proven it — it gives a way of taking any possible pairing of the elements of {a, b, c}
with its subsets and shows that after pairing up all the elements of {a, b, c}, there is always some element
left uncovered. This same technique can be applied to other sets as well. For example, suppose we have the
set {a, b, ¢, d, e, f}, and this pairing:

ae {b,c, d}

b o {e, f}
ceo{a,b,cde,f}
de o
e o {a, f}
fo {b,c,d e}

We can then build the following table, which has its diagonal and complemented diagonal shown:

a? b? c? d? e? f?

a paired with| N Y Y Y N N

b paired with| N N N N Y Y

c paired with Y Y Y Y Y Y

d paired with| N N N N N N

e paired with| Y N N N N Y

f paired with| N Y Y Y Y N
Complemented Diagonal | Y Y N Y Y Y

From this, we get that the complemented diagonal is the set {a, b, d, e, f}, which indeed is not in the list of
sets described in the pairing.

1.8.3 Formalizing the Diagonal Argument

We have just described the intuition behind Cantor's diagonal argument — we can show that in any pairing
between a set S and the set (S), there must be some element of (S) that isn't covered by the pairing.
However, so far our proof requires us to construct a table representing the pairing whose size is determined
by the number of elements in S. Given this, will this argument work when we are dealing with infinite sets?
We've seen a lot of strange results that appear when working with the infinite, and so it doesn't seem particu-
larly “safe” to assume that this approach, which works in the finite case, scales up to the infinite case.

It turns out, however, that this argument can indeed be applied to infinite sets! However, to do so will re-
quire us to be more precise and formal than our reasoning above, in which we just drew a picture. We need
to find a way of nicely describing what set is constructed by the diagonal argument without having to draw
out a potentially infinite table. Fortunately, there is a nicely straightforward way to do this. Let's consider
the previous example:
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ae {b,c,d}

b {e, f}
ce{a,b,c,d e f}
de o
e & {a, f}
fe {b,c,d e}

If we draw this out as a table, we get the following:

a? b? c? d? e? £?

a paired with N Y Y Y N N

b paired with N N N N Y Y

c paired with Y Y Y Y Y Y

d paired with| N N N N N N

e paired with Y N N N N Y

f paired with N Y Y Y Y N
Complemented Diagonal Y Y N Y Y Y

Now, let's think about the diagonal of this table. Notice that each diagonal entry represents whether some
element x € S is paired with a set that contains itself. If the element x is paired with a set that contains it, the
entry on the diagonal is a Y, and if x is paired with a set that doesn't contain it, then the entry on the diagonal
is an N. In the complemented diagonal, this is reversed — the complemented diagonal entry is a Y if x is
paired with a set that doesn't contain x, and is an N if x is paired with a set that does contain x. In other
words, we can think about the set defined by the complemented diagonal (let's call it D) as follows:

D = { x| there is an N in the diagonal entry for x }
Or, more concretely:
D = { x| x is paired with a set that does not contain x }

Now this is interesting — we now have a definition of the diagonal set D that doesn't require us to even con-
struct the table! The rule for finding D is straightforward: we simply find all the elements of the set S that
are paired with subsets of S that don't contain themselves, then gather those up together into a set. Does this
really work? Well, if experience is a guide, then yes! Here are a few pairings from before, along with the
associated diagonal set:
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ao {b,c,d)
be {e, f
a o {a) ae {a, b} co (a b{c d}e .
Pairing b« {b} b O (,1;)(,5, )
c < {a, b} c e {a,c) co (o f)
f e {b,c,d, e}
Complemented
Diagonal Set {c} {b} {a,b,d,e, f}

You can (and should!) check that in each case, the complemented diagonal set is indeed the set of elements
that aren't paired with a set that contains them. For example, in the first example since a is paired with {a}
and b is paired with {b}, neither is included in the complemented diagonal set, while c, which is paired with
a set that doesn't contain c, is indeed in the complemented diagonal set.

1.8.4 Proving Cantor's Theorem

Given this definition of the diagonal set, we can formally prove Cantor's theorem.

Theorem (Cantor's Theorem): For any set S, IS < [go(S)I.

In order to prove Cantor's theorem, let's think about the definition of what it means for one set to have lesser
cardinality than another. This would mean that

151 < Ig(S)l and IS1 # I(S)

We can prove each part of this independently. Cantor's diagonal argument will handle the second case
(which we'll handle in a minute), but first let's show that ISI < [go(S)l. How can we show this? To do so, we
need to show that we can pair off all of the elements of S with some element in ¢(S). This might seem hard,
because we don't actually know what S is; we need to show that for any set S, it's always possible to find such
a pairing. This actually ends up being not too difficult. Note that for each element x € S, the set {x} C S.
Therefore, {x} € (S). Consequently, one way of pairing up all the elements of S with elements from g(S)
would be to associate each element x € S with the element {x} € (S). This ensures that each element of S
is paired up with a unique element from £(S).

Now, we need to formally prove that IS| # I§(S)l, even though we don't actually know what S is (we're trying
to prove the claim for any possible choice of S). So what does it mean for IS| # §(S)I? Well, this would
mean that there must be no possible way of pairing off all the elements from the two sets with one another.
How can we show that this is impossible? Here, we will employ a technique called proof by contradiction.
In a proof by contradiction, we try to show that some statement P is true by doing the following:

*  Assume, hypothetically, that P was false.

*  Show that this assumption, coupled with sound reasoning, leads us to a conclusion that is obviously
false.

*  Conclude, therefore, that our assumption must have been wrong, so P is true.
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As an example of a proof of this style, suppose that you want to convince someone that it is not raining out-
side (if it's raining when you're reading this, then my apologies — please bear with me!) One way to con-
vince someone that it's not raining is as follows:

1. Suppose, hypothetically, that it were raining.

2. Therefore, I should be soaking wet from my walk a few minutes ago.

3. But I am not soaking wet from my walk a few minutes ago.

4. Since steps (2) and (3) are logically sound, the only possible problem is step (1).
5. Conclude, therefore, that it's not raining outside.

Here, when proving that ISI # 1§(S)l, we will use a proof by contradiction. Suppose, hypothetically, that
ISI = Igo(S)I. Then there is a way of pairing up all of the elements of S and §(S) together — we don't know
what it is, but allegedly it exists. This should mean that any element of (S) that we choose should be
paired up with some element of S. Since every element of g(S) is a subset of S (that's how we defined the
power set!), this should mean that if we choose any subset of S, it should be paired up with some element
from S. But now we can employ Cantor's diagonal argument. If it's really true that any subset of S must be
paired up with some element of S, then surely we should be able to find some element paired up with the set

D = {x|x € Sand x is paired with a set that does not contain x. }

Well, since D allegedly must be paired with something, let's call that element d. But if you'll recall from our
discussion of the diagonal argument, we should now be able to show that D actually isn't in this table, mean-
ing that there really isn't an element d that it could be paired with. But how do we show this? Here, we'll
simply ask the following question: is d contained in D? There are two possible options: either d € D or
d ¢ D. Let's consider these two cases individually.

First, suppose that d € D. Recall that the definition of D says that this means that d would have to be paired
with a set that doesn't contain d. Since d is paired with D, this would have to mean that d ¢ D, but this is
clearly impossible, because we know that in this case d € D. Since if d € D we conclude that d ¢ D, we
know that it must not be possible for d € D to be true.

So this means that d ¢ D. Well, let's see what that means. Since d ¢ D, then by looking at the definition of
the set D, we can see that this means that the set that d is paired with must contain d. Since d is paired with
the set D, this would mean that d € D. But this isn't true!

We have just reached a logical contradiction. If d € D, then we know that d ¢ D, and similarly if d ¢ D, then
d € D. In other words, D contains d if and only if D does not contain d. We have reached a logical impossi-
bility.

All of the reasoning we've had up to this point is sound, so we are forced to admit that the only possibility

remaining is that our assumption that ISl = 1@(S)! is incorrect. Consequently, we have proven IS # Ig@(S)!.
Since earlier we proved IS < Ig(S)l, this collectively proves Cantor's theorem.

1.9 Why Cantor's Theorem Matters

We have just proven Cantor's theorem, that the number of subsets of a set S is strictly greater than the num-
ber of elements of that set S. But why does this matter? It turns out that this is actually a hugely important
result with a terrifying corollary. To begin with, note that Cantor's theorem says that there are more subsets
of a set than elements of that set, even if the initial set is infinite. This suggests that there is no one concept
of “infinity,” and that there are, in fact, different infinitely large quantities, each one infinitely larger than the
previous! In fact this means that
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*  There are more sets of natural numbers than natural numbers (INI < Igo(N)I)
*  More sets of sets of natural numbers than sets of natural numbers (I(N)I < lgo(2(N))1),
* etc.

The fact that there are different infinitely large numbers has enormous significance to the limits of comput-
ing. For example, there are infinitely many problems to solve, and there are infinitely many programs to
solve them. But this doesn't mean that there are the same number of problems and solutions! In fact, it
might be possible that there are more problems that we might want to solve than there are programs to solve
them, even though both are infinite! In fact, this is the case. Let's see why.

1.10 The Limits of Computation

Let's begin with a pair of definitions:

An alphabet is a set of symbols.

For example, we could talk about the English alphabet as the set A={ A,B,C,D, ..., Y, Z,a,b, ...,z }.
The binary alphabet is the alphabet {0, 1}, and the unary alphabet is the alphabet { 1 }. Given an alphabet,
what words can we make from that alphabet? Typically, we will use the term “string” instead of “word:”

A string is a finite sequence of symbols drawn from some alphabet.

For example, hello is a string drawn from the English alphabet, while 01100001 is a string drawn from the
binary alphabet.

Every computer program can be expressed as a string drawn from the appropriate alphabet. The program's
source code is a sequence of characters (probably Unicode characters) that are translated into a program us-
ing a compiler. In most programming languages, not all strings are legal programs, but many are. As a re-
sult, we can say that the number of programs is at most the number of strings, since we can pair up the pro-
grams and strings without exhausting all strings (just pair each program with its source code).

Now, let's think about how many problems there are out there that we might want to solve. This really de-
pends on our notion of what a “problem” is, but we don't actually need to have a formal definition of “prob-
lem” quite yet. Let's just focus on one type of problem: deciding whether a string has some property. For
example, some strings have even length, some are palindromes, some are legal Java programs, some are
mathematical proofs, etc. We can think of a “property” of a string as just a set of strings that happen to
share that property. For example, we could say that the property of being a palindrome (reading the same
forwards and backwards) could be represented by the set

{ab,c,...,z,aa,bb, ..., zz, aba, aca, ada, ... }
While the property of having exactly four letters would be
{ aaaa, aaab, aaac, ..., zzzz }

For each of these properties, we might think about writing a program that could determine whether a string
has that given property. For example, with a few minutes' effort you could probably sit down and write a
program that will check whether a string is a palindrome or contains just four characters, and with more ef -
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fort could check if a string encoded a legal computer program, etc. In other words, each property of strings
(that is, a set of strings) defines a unique problem — determine whether a given string has that property or
not. As a result, the number of sets of strings is no bigger than the total number of problems we might want
to solve, since there's at least one problem to solve per set of strings.

This leads to the following line of reasoning:
The number of programs is no bigger than the number of strings.

The number of strings is strictly less than the number of sets of strings (from Cantor's theorem).

The number of properties of strings is bigger than the number of strings.
Since each property of strings gives rise to a problem to solve:

The number of problems is at least the number of properties of strings.
Combining this all together gives the following:

The number of programs is strictly less than the number of problems.

In other words:

There are more problems than there are programs to solve them.

We have just proven, without even looking at how computers work or how clever programmers are, that
there are problems that cannot possibly be solved by a computer. There are simply too many problems to go
around, so even if we wrote all of the infinitely many possible programs, we would not have written a pro-
gram to solve every problem.

1.10.1 What Does This Mean?

At this point, we could throw up our hands and despair. We have just shown the existence of unsolvable
problems, problems that can be formulated but not possibly solved.

Unfortunately, it gets worse. Using more advanced set theory, we can show that the infinity of problems so
vastly dwarfs the infinity of solutions that if you choose a totally random problem to solve, the chance that
you can is 0. Moreover, since there are more problems to solve than possible strings, some of the problems
we can't solve may be so complex that there is no way to describe them; after all, a description is a way of
pairing a string with a problem!

But there's no way we can give up now. We have shown that there is an infinite abyss of unsolvable prob-
lems, but everywhere we look we can see examples of places where computers have solved problems.

Rather than viewing this result as a sign of defeat, treat it as a call to arms. Yes, there are infinitely many
problems that we can't solve, but there are infinitely many problems that we can solve as well. What are
they? What do they look like? Of the problems we can solve in theory, what can be solved in practice as
well? How powerful of a computer would you need to solve them? These are questions of huge practical
and theoretical importance, and it's these questions that we will focus on in the rest of this book. In doing
so, you'll sharpen your mathematical acumen and will learn how to reason about problems abstractly. You'll
learn new ways of thinking about computation and how it can impact your practical programming skills.
And you'll see some of the most interesting and fascinating results in all of computer science.

Let's get started!
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1.11 Chapter Summary
* A setis an unordered collection of distinct elements.
* Sets can be described by listing their elements in some order.
* Sets can also be described using set-builder notation.
* Set can be combined via union, intersection, difference, or symmetric difference.
* Two sets are equal precisely when they have the same elements.
*  One set is a subset of another if every element of that set is in the other set.
*  The power set of a set is the set of its subsets.
* A statement is vacuously true if its assertion doesn't apply to anything.
*  The cardinality of a set is a measure of how many elements are in that set.
*  Two sets have the same cardinality if all elements of both sets can be paired up with one another.

» Cantor's diagonal argument can be used to prove Cantor's theorem, that the cardinality of a set is al-
ways strictly less than the cardinality of its power set.
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Last chapter we concluded with Cantor's theorem, the fact that the cardinality of the power set of a set S is
always greater than the cardinality of the set S itself. Although we worked through a strong argument that
this should be true, did we really “prove” it? What does it mean to prove something, at least in a mathemati-
cal sense?

Proofs are at the core of the mathematical foundations of computing. Without proofs we couldn't be certain
that any of our results were correct, and our definitions would be little better than an intuition to guide us.
Accordingly, before we attempt to explore the limits of computation, we first need to build up the machinery
necessary to reason about and firmly establish mathematical results.

Proofs are in many ways like programs — they have their own vocabulary, terminology, and structure, and
you will need to train yourself to think differently in order to understand and synthesize them. In this chap-
ter and the ones that follow, we will explore proofs and proof techniques, along with several other concepts
that will serve as a “proving ground” for testing out these proof ideas.

One quick note before we continue — because this chapter focuses on how to structure mathematical proofs,
some of the results that we'll be proving early on will be pretty trivial. I promise you that the material will
get a lot more interesting toward the end of the chapter, and once we make it into Chapter Three the results
we will be proving will be much more involved and a lot more interesting. Please don't get the impression
that math is painfully boring and pedantic! It's a really fascinating subject, but we need to build up a few
techniques before we can jump into the real meat of the material.

2.1 What is a Proof?

In order to write a proof, we need to start off by coming up with some sort of definition of the word “proof.”
Informally, a mathematical proof is a series of logical steps starting with one set of assumptions that ends up
concluding that some statement must be true. For example, if we wanted to prove the statement

If x + y=16, then either x > 8 or y > §

then we would begin by assuming that x + y = 16, then apply sound logical reasoning until we had arrived at
the conclusion that x = 8 or y = 8. Similarly, if we wanted to prove that

For any set S, IS| < [©o(S)I

(as we started doing last chapter), we would take as our starting point all of the definitions from set theory —
what the power set is, what it means for one set to have smaller cardinality than another, etc. - and would
proceed through logical steps to conclude that S| < Ig(S)I.

Writing a proof is in many ways like writing a computer program. You begin with some base set of things
that you know are true (for example, how primitive data types work, how to define classes, etc.), then pro-
ceed to use those primitive operations to build up something more complicated. Also like a program, proofs
have their own vocabulary, language, structure, and expectations. Unfortunately, unlike programs, there is
no “compiler” for proofs that can take in a proof and verify that it's a legal mathematical proof.” Conse-
quently, learning how to write proofs takes time and effort.

*  Technically speaking such programs exist, but they require the proof to be specified in a very rigid format that is almost never used in formal
mathematical proofs.
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In this chapter, we will introduce different types of proofs by analyzing real proofs and seeing exactly how
they work. We'll also see what doesn't work and the sort of logical traps you can easily fall into when writ-
ing proofs.

2.1.1 Transitioning to Proof-Based Mathematics

The math that you're probably most familiar with is the style of math that you saw in high school. Typically,
high school mathematics focuses on calculation. For example, you'll probably get problems like this one:

Two trains are 50 miles apart from one another and on parallel tracks. One train takes off
from the station heading at 24 miles per hour, while the other train takes off heading 12
miles per hour. The two trains are driving toward one another. How long will it take for
the two trains to pass one another?

Or perhaps something like this:

5
Evaluate the integral f X \/ 1+ dx
0

Or perhaps something like this:

A square is circumscribed inside a circle of radius 15. The square is then divided into four
right triangles whose right angle is the center of the square. What is the sum of the perime-
ters of these triangles?

Problems like these have exact numeric values associated with them, and the goal of the problem is to work
through a calculation to come up with some number. You can memorize different approaches for solving
these sorts of problems and build up a repertoire of techniques for solving them. The focus on these prob-
lems is determining which calculations to perform.

The math that we will be doing in this course is of a totally different flavor. We will be interested in proving
general properties of different types of objects (numbers, data structures, computer programs, etc.) In doing
so, we may perform some small calculations from time to time, but our main objective will be establishing a
clear line of reasoning that rigorously demonstrates a result. In fact, you'll find that most proofs that we'll be
writing read like essays with some mathematical jargon, since the goal will be to describe a rigorous line of
reasoning rather than to compute a value.

2.1.2 What Can We Assume?

One of the most difficult aspects of writing a proof is determining what you can assume going into the
proof. In journals, proofs often assume that the reader is familiar with important results, and often cite them
without reviewing why they're true. For our purposes, though, we will deliberately play dumb and start with
a very weak set of assumptions. We will prove pretty much everything we need, even if it seems completely
obvious, in order to see how to formalize intuitive concepts with a level of mathematical rigor.

In this book, we will assume that whoever is reading one of our proofs knows
1. All definitions introduced so far,
2. All theorems introduced so far, and
3. Basic algebra.

We will not assume anything more than this. For example, we're fine assuming that if x < y and y < z, then
x < z, but we will not assume that for any set S, S N @ = @ even though this seems “obvious.” As we build
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up our mathematical repertoire, the set of assumptions we can make will grow, and it will become easier and
easier to prove more elaborate results. This is similar to writing libraries in computer programs — although
it's difficult and a bit tedious to implement standard data structures like ArrayList and HashMap, once
you've put in the work to do so it becomes possible to build up off of them and start writing much more in-
tricate and complex programs.

2.2 Direct Proofs

Just as it's often easiest to learn how to program by jumping into the middle of a “Hello, World!” program
and seeing how it works, it's useful to jump right into some fully worked-out mathematical proofs to see how
to structure general proofs.

To begin our descent into proofs, we'll introduce two simple definitions, then see how to prove results about
those definitions.

An integer x is called even if there is some integer & such that x = 2k.

An integer x is called odd if there is some integer k such that x = 2k + 1.

For example, 4 is even since 4 =2 x 2. 8 is even as well, since 8 =4 x 2. 9 is odd, because 9 =4 x 2 + 1.
We consider 0 to be an even number, since 0 = 0 x 2.

Given this, let's prove the following result:

Theorem: If x is even, then x> is even.

Proof': Let x be any even integer. Since x is even, there is some integer k such that x = 2k. This
means that x* = (2k)* = 4k* = 2(2k%). Since 2k* is an integer, this means that there is some integer m
(namely, 2k*) such that x*= 2m. Thus x* is even. H

Let's look at how this proof works. The proof proceeds in several clean logical steps, each of which we can
analyze independently.

First, note how the proof starts: “Let x be any even integer.” The goal of this proof is to show that if x is
even, then x” is even as well. This proof should work no matter what choice of x we make — whether it's 0,
2,4, 6, 8, etc. In order for our proof to work in this general setting, the proof will proceed by using x as a
placeholder for whatever even number we're interested in. If we wanted to convince ourselves that some
particular even number has a square that's also even, we could just plug that even number into the proof
wherever we were using x. For example, if we want to prove that 12* is even, the proof would go like this:

Proof: Since 12 is even, there is some integer k such that 12 = 2k. (This integer k is the integer 6).
This means that 12> = (2 x 6)* =4 x 6> = 2(2 x 6%) =2 x 72. Since 72 is an integer, this means that
there is some integer m (namely, 72) such that 12* = 2m. Thus 127 is even. ll
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All that we've done here is substitute in the number 12 for our choice of x. We could substitute in any other
even number if we'd like and the proof would still hold. In fact, that's why the proof works — we've shown
that no matter what choice of an even number you make for x, you can always prove that x* is even as well.

Let's continue dissecting this proof. After we've decided to let x be a placeholder for whatever even number
we'd like, we then say

Since x is even, there is some integer k such that x = 2k

What does this statement mean? Well, we know that x is an even number, which means that it must be
twice some other number. We can't really say what that number is, since we don't know what our choice of
x is. However, we can say that there is some number such that x is twice that number. In order to manipu-
late that number in this proof, we'll give this number a name (in this proof, we call it k). Interestingly, note
that nowhere in this sentence do we actually say how to figure out what this value of k is; we just say that it
has to exist and move forward. From a programming perspective, this may seem strange — it seems like
we'd have to show how to find this number k in order to assert that it exists! But it turns out that it's per-
fectly fine to just say that it exists and leave it at that. Our definition of an even number is an integer that is
equal to twice some other number, so we know for a fact that because x is even, this number k must exist.

At this point, we know that x = 2k, and our goal is to show that x*is even. Let's think about how to do this.
To show that x* is even, we will need to find some integer m such that X =2m. Right now, all that we know
is that x is even and, as a result, that x = 2k for some choice of k. Since we don't have much else to go on
right now, let's try seeing if we can describe x* in terms of x and k. Perhaps doing this will lead us to finding
some choice of m that we can make such that x* = 2m. This leads to the next part of the proof:

This means that x* = (2k)* = 4k* = 2(2k*). Since 2k is an integer, this means that there is some inte-
ger m (namely, 2k%) such that x* = 2m

The first of these two sentences is a simple algebraic manipulation. We know that x = 2k, so x* = (2k). If
we simplify this, we get x* = 4k%, which is in turn equal to 2(2k?). This last step — factoring out the two from
the expression — then makes it clearer that x” is twice some other integer (specifically, the integer 2k%). We
can then conclude that there is some natural number m such that x* = 2m, since we've found specifically what
that value was. Because we've done this, we can conclude the proof by writing:

Thus x° is even. l

This holds because the definition of an even number is one that can be written as 2m for some integer m.
Notice that we've marked the end of the proof with the special symbol B, which serves as a marker that
we're done. Sometimes you see proofs ended with other statements like “This completes the proof” or
“QED” (from the Latin “quod erat demonstrandum,” which translates roughly to “which is what we wanted
to show”). Feel free to end your own proofs with one of these three endings.

Let's take a look at an example of another proof:
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Theorem: If m is even and n is odd, then mn is even.

Proof': Let m be any even number and n be any odd number. Then m = 2r for some integer r, and
n =2s + 1 for some integer s. This means that mn = (2r)(2s + 1) = 2(#(2s + 1)). This means that
mn = 2k for some integer k (namely, 7(2s + 1)), so mn is even. l

The structure of this proof is similar to the previous proof. We want to show that the claim holds for any
choice of even m and odd n, so we begin by letting m and n be any even and odd number, respectively.
From there, we use the definition of even and odd numbers to write m = 2r and n as 2s + 1 for some integers
rand s. As with the previous proof, we don't actually know what these numbers are, but they're guaranteed
to exist. After doing some simple arithmetic, we end up seeing that mn = 2(r(2s + 1)), and since r(2s + 1) is
an integer, we can conclude that mn is twice some integer, and so it must be even.

The above proofs are both instances of direct proof's, in which the proposition to be proven is directly shown
to be true by beginning with the assumptions and ending at the conclusions.

2.2.1 Proof by Cases

Let's introduce one new definition, which you may be familiar with from your programming background:

The parity of an integer is whether it is odd or even. Two numbers have the same parity if they are
both odd or both even.

For example, 1 and 5 have the same parity, because both of the numbers are odd, and 4 and 14 have the
same parity because both 4 and 14 are even. However, 1 and 2 have opposite parity, because 1 is odd and 2
is even.

The following result involves the parity of integers:

Theorem: If m and n have the same parity, then m + n is even.

Before we try to prove this, let's check that it's actually correct by testing it on a few simple examples. We
can see that 2 + 6 =8 is even, and 1 + 5 = 6 is even as well. But how would we prove that this is true in the
general case? In a sense, we need to prove two separate claims, since if m and n have the same parity, then
either both m and n are even or both m and n are odd. The definitions of odd numbers and even numbers
aren't the same, and so we have to consider the two options separately. We can do this cleanly in a proof as
follows:
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Proof: Let m and n be any two integers with the same parity. Then there are two cases to consider:

Case 1: m and n are even. Then m = 2r for some integer r and n = 2s for some integer s. Therefore,
m+n=2r+2s=2(r+s). Thus m + n =2k for some integer k (namely, r + s), SO m + n is even.

Case 2: m and n are odd. Then m = 2r + 1 for some integer r and n = 2s + 1 for some integer s.
Therefore, m+n=2r+1+2s+1=2r+2s+2=2(r+ s+ 1). Thus m + n = 2k for some integer k
(namely, r + s+ 1), som + nis even. B

Note how this proof is structured as two cases — first, when m and n are even, and second, when m and n are
odd. This style of proof is sometimes called a proof by cases or a proof by exhaustion (because we've ex-
hausted all possibilities and found that the claim is true, not because we're tired of writing proofs). Each of
the branches of the proof reads just like a normal proof, but is individually insufficient to prove the general
result. Only when we show that in both of the possible cases the result holds can we conclude that the claim
is true in general.

When writing a proof by exhaustion, it's critically important to remember to check that you have covered all
possible cases! If you have a proof where four options are possible and you only prove three cases, your
proof is likely to be incorrect.

Let's see another example of a proof by cases:

Theorem: If n is even and m is an integer, then n + m has the same parity as m.

Before proving this, it's always good to check that it works for a few test cases. If we let n = 4, then we can
see that

* 4 +3=7,and 7 has the same parity as 3.
* 4+ 6=10,and 10 has the same parity as 6.

Let's see a proof of this result:

Proof': Consider any even integer n. Now, consider any integer m and the sum »n + m. We consider
two possibilities for m:

Case 1: m is even. Then m and n have the same parity, so by our previous result (if m and »n have the
same parity, then m + n is even) we know that m + n is even. Therefore m and m + n have the same
parity.

Case 2: m is odd. Since 7 is even, n = 2r for some integer r, and since m is odd, m = 2s + 1 for some
integer s. Thenn +m =2r+2s+1=2(r+ s) + 1. This means that n + m = 2k + 1 for some k
(namely, r + 5), so n + m is odd. Therefore m and m + n have the same parity. ll

This proof is interesting for two reasons. First, notice that in proving that Case 1 is true, we used the result
that we have proven previously: if n and m have the same parity, then n + m is even. This means that we
didn't have to try writing n = 2r and m = 2s, and we ended up saving a lot of space in our proof. Whenever
you're writing a proof, feel free to cite any result that you have previously proven. In CS103, it's perfectly
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fine to cite proofs from lecture, this book, or the problem sessions, as long as you make it clear what result
you're using.

Second, notice that in this proof the cases resulted from the parity of just one of the variables (m). We
knew that the parity of » must be even, and the only thing that was unclear was whether m was odd or even.

2.2.1.1 A Quick Aside: Choosing Letters

If you'll notice, the proofs that we've done so far use lots of letters to stand for numbers: m, n, k, r, s, etc. In
general, when writing a proof, you should feel free to choose whatever letters you think will make the proof
flow most cleanly. However, you should make an effort to pick a consistent naming convention, much in the
same way that you should adopt a naming convention when writing computer programs.

In this set of course notes, I will typically use single capital letters (S, 7, U) to represent sets. I tend to use
the letters m, n, and k to represent natural numbers and x, y, z to represent integers. If I run out of letters, I
might borrow others from other parts of the alphabet (for example, r, s, and ¢ for natural numbers) if we ex-
haust our normal supply.

When working with values in a sequence (more on that later), I'll tend to use subscripted symbols like xi, x»,
..., xi. In those cases, the letters i, j, and k will typically refer to variable indices, and n will represent quanti-
ties like the total number of elements in the sequence.

2.2.2 Proofs about Sets

In the last chapter, we explored sets and some of the operations on them. You have already seen one theo-
rem about sets (specifically, Cantor's theorem). But what else can we prove about sets? And how do we
prove them?

Let's begin with a very simple proof about sets:

Theorem: For any sets A and B, AN B C A.

This theorem intuitively makes sense. We can think of A N B as the set of things that A and B have in com-
mon. In other words, we're filtering down the elements of A by just considering those elements that also
happen to be in B. As a result, we should end up with a set that's a subset of the set A. So how do we prove
this? As you will see, the proof works similarly to our proof about odd and even numbers: it calls back to
the definitions of intersection and subset, then proceeds from there.

Proof': Consider any sets A and B. We want to show that A N B C A. By the definition of subset, this
means that we need to show that for any x € AN B, x € A. So consider any x € A N B. By the defini-
tion of intersection, x € A N B means that x € A and x € B. Therefore, if x € AN B, x € A. Since our
choice of x was arbitrary, ANBC A.

Let's examine the structure of the proof. We initially wanted to prove that A N B € A. To do this, we said
something to the effect of “okay, I need to prove that AN B € A. What does this mean?” By using the defi-
nition of subset, we were able to determine that we needed to prove that for any choice of x € A N B, it's true
that x € A. Again we ask — so what does it mean for x € A N B? Again we call back to the definition:
x € AN B means that x € A and x € B. But at this point we're done — we needed to show that any x € AN B
also satisfies x € A, but the very definition of A N B guarantees this to us!
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This proof illustrates a crucial step in many proofs — if you are unsure about how to proceed, try referring to
the definitions of the terms involved. Often this simplification will help you make progress toward the ulti-
mate proof by rewriting complex logic in terms of something similar.

Let's do another simple proof:

Theorem: For any sets A and B, A C AU B.

This result says that if we take any collection of things (the set A) and combine it together with any other set
of things (forming the set A U B), then the original set is a subset of the resulting set. This seems obvious —
after all, if we mix in one set of things with another, that initial set is still present! Of course, it's good to
formally establish this, which we do here:

Proof: Consider any sets A and B. We want to show that A € A U B. To do this, we show that for
any x € A, that x € AU B as well. Note that by definition, x € AU Biff x € Aor x € B.

Consider any x € A. It is therefore true that x € A or x € B, since we know x € A. Consequently,
x € AU B. Since our choice of x was arbitrary, this shows that any x € A also satisfies x € A U B.
Consequently, A € A U B, as required. l

Again, notice the calling back to the definitions. To prove A € A U B, we argue that every x € A also satisfies
x € AU B. What does it mean for x € A U B? Well, the definition of A U B is the set of all x such that either
x € A or x € B. From there we can see that we're done — if x € A, then it's also true that x € A or x € B, so
it's true that x € A U B.

Let's do another proof, this time proving a slightly more complex result:

Theorem: For any sets A, B, and C, we have C— (AN B) C (C-A)U(C-B)

As an example, let's take A = {1, 2,3}, B={3,4,5},and C= {1, 2, 3,4, 5}. Then we have that
C-(AnB)={1,2,3,4,5} - {3} ={1,2,4,5}.

We also have that
(C-AU(C-B)={4,5}u{1,2}={1,2,4,5}.

Thus in this single case, C— (A N B) € (C— A) U (C — B), since the two sets are equal.

This theorem worked out in the above case, but it's not at all clear exactly why this would be true. How,
then, could we prove this?

Whenever you need to write a proof, always be sure that you understand why what you're proving is true be-
fore you try to prove it! Otherwise, you're bound to get stuck. So before we start to work through the actual
proof, let's try to build up an intuition for why this result is true. To do so, let's turn to Venn diagrams,
which are surprisingly useful when proving results like these.
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Let's start with this Venn diagram for three sets:”

O
“5

If we highlight the set A N B, we get this region of the diagram:

&

Given this, we can see that C — (A N B) corresponds to this region:

Now, let's take a look at (C— A) U (C — B). If we highlight C — A and C — B separately, we get these regions:

*  I'm using diamonds instead of circles here because my drawing program (LibreOffice) makes it tricky to fill in circular regions. If you have any
suggestions on how to draw better Venn diagrams, please let me know!
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Consequently, their union (C — A) U (C — B) is this region here:

”s‘o

Now it's a bit clearer why this result should be true — the two sets are actually equal to one another! More -
over, it's easier to see why. To build up the sets C — (A N B), we can construct the sets C— A and C — B, then
combine them together.

That said, the above picture isn't really a mathematical proof in the conventional sense. We still need to
write out the proof longhand. To do this, we'll try to translate the above pictorial intuition into words.
Specifically, we can work as follows. If we take any element of C — (A N B), then (as you can see above) it
belongs to at least one of C — A or C — B. We can therefore write a proof by cases and show that regardless
of which of these two sets our element belongs to, we know that the element must belong to (C - A) U (C -
B).

This is formalized below:

Proof: Consider any sets A, B, and C. We will show C— (AN B) C (C —A) U (C - B). By definition,
this is true if for any x € C — (A N B), we also have x € (C — A) U (C — B). So consider any

x € C— (AN B). By the definition of set difference, this means that x € C and x ¢ A N B. Since

x ¢ AN B, we know that it is not the case that both x € A and x € B. Consequently, it must be true
that either x ¢ A or x ¢ B. We consider these two cases individually:

Case 1: x ¢ A. Since we know that x € C and x ¢ A, we know that x € C— A. By our earlier result, we
therefore have that x € (C— A) U (C - B).

Case 2: x ¢ B. Since we know that x € C and x ¢ B, we know that x € C — B. By our earlier result, we
therefore have that x € (C— A) U (C - B).

In either case we have that x € (C— A) U (C — B). Since our choice of x was arbitrary, we have that
C-(ANnB)C(C-A)U(C- B)asrequired. &

Notice that in the course of this proof, we ended up referring back to the proof we did above in which we
claimed that for any sets A and B, A € A U B. Using this theorem, we were able to conclude that if
xeC—A, then x € (C—- A) U (C — B). This is extremely common in mathematics. We begin with a few
simple terms and definitions, then build up progressively more elaborate results from simpler ones. Most
major results do not work from first principles, but instead build off of earlier work by combining well-
known results and clever insights.
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2.2.3 Lemmas

Let's think about the simple result that A € A U B. In itself, this isn't very surprising. The proof is simple
and straightforward, and in the end we don't end up with anything particularly complex. However, as you
saw above, this simple result can be used as a building block for proving more elaborate results.

A result that is primarily used as a small piece in a larger proof is sometimes called a lemma. Lemmas are
distinguished from theorems primarily by how they're used. Some lemmas, such as the pumping lemma
(which you'll learn more about later) are actually quite impressive results on their own, but are mostly used
as a step in more complex proofs. Other lemmas, like the one you just saw, are simple but necessary as a
starting point for future work.

When proving results about sets, lemmas like A € A U B are often useful in simplifying more complex
proofs. In fact, many seemingly obvious results about sets are best proven as lemmas so that we can use
them later on.

The first lemma that we'll actually treat as such is the following result, which helps us prove that two sets are
equal to one another:

Lemma: If A and B are sets, then A = Bif and only if A C Band B C A.

Note the use of the phrase if and only if in this lemma. The phrase “P if and only if Q” means that when-
ever P is true, Q is true, and whenever Q is true, P is true. In other words, “P if and only if Q” means that P
and Q have the same truth value — either both P and Q are true, or both P and Q are false. The statement “if
and only if” is a very strong assertion — it says that any time we'd like to speak about whether P is true or
false, we can instead speak of whether Q is true or false.

As long as we're on the subject, you sometimes see the word iff used to mean “if and only if.” This is a
term that we'll use throughout this text, as it's widely used in the mathematical world. Consequently, we
might rewrite the above lemma as

Lemma: If A and B are sets, then A=Biff AC Band B C A.

Note that “iff” is read aloud as “if and only if.” That way, we don't need to try to differentiate between “if”
and “iff” by listening to how long the speaker draws out the final “f.” This means that the above lemma
would still be read aloud as “for any sets A and B, A equals B if and only if A is a subset of B and B is a sub-
setof A.”

Now, let's get down to business — what does this lemma say? The above lemma tells us that two sets A and
B are equal to one another if and only if (in other words, precisely when) A is a subset of B and vice-versa.
Recall that two sets are equal when they have exactly the same elements; it doesn't matter how we describe
or construct the sets, just that they have the same elements. The above lemma states that if we want to show
that two sets are equal, all we need to do is show that all of the elements of one set are contained in the other
and vice-versa.

So how exactly do we go about proving this lemma? So far, all of the proofs that we've seen have taken the
form “if P, then Q.” If we want to prove a statement of the form “P iff Q,” then we need to prove two things
— first, if P is true, then Q is true; second, if Q is true, then P is true as well. In other words, both P and Q
imply one another.

Given this setup, here is one proof of this result:
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Proof: We prove both directions of implication.

(= ) First, we show that, for any sets A and B, if A = B, then A € Band B C A. If A = B, consider
any x € A. Since A = B, this means that x € B. Since our choice of x was arbitrary, any x € A satisfies
x € B, so A € B. Similarly, consider any x € B, then since A = B, x € A as well. Since our choice of x
was arbitrary, any x € B satisfies x € A, so B C A.

( &) Next, we prove that if A € Band B C A, then A = B. Consider any two sets A and B where

A C Band BC A. We need to prove that A = B. Since A C B, for any x € A, x € B as well. Since
B C A, for any x € B, x € A as well. Thus every element of A is in B and vice-versa, so the two sets
have the same elements. ll

This proof looks different from the ones we've seen so far both structurally and notationally. This proof is
essentially two separate proofs that together prove a larger result; the first half proves that if two sets are
equal each is a subset of the other, and the second half proves that if two sets are subsets of one another they
are equal. This is because in order to prove the biconditional, we need to prove two independent results,
which together combine to prove the biconditional. Within each piece of the proof, notice that the structure
is similar to before. We call back to the definitions of subset and set equality in order to reason about how
the elements of the sets are related to one another.

You probably noticed the use of ( = ) and ( < ) here. In proofs involving biconditionals, it's common to
split the proof up into two logically separate sections, one for the forward direction and one for the reverse
direction. To demarcate the sections, we often use the symbols ( = ) and ( &< ). The (=) part of the proof
denotes the forward direction: when proving A iff B, this is the “if A, then B” part. Similarly, the ( <) part
of the proof denotes the “if B, then A” part. As a courtesy to the proof reader, it usually is a good idea to
briefly restate what it is that you're going to be proving before you jump into the proof.

Now that we have this lemma, let's go and use it to prove some Fun and Exciting Facts about set equality!
Let's begin with a simple result that teaches something about how symmetric difference works:

Theorem: For any sets A and B, (AUB)—(ANB)=AAB.

Intuitively, this says that we can construct the symmetric difference of A and B (that is, the set of elements
that are either in A or B, but not both) as follows. First, combine the two sets A and B together into the
larger set A U B. Next, take out from that set all of the elements that are in the intersection of A and B. The
remaining elements form the set A A B.

To prove this result, we can use our lemma from above, which says that two sets are equal iff each is a subset
of the other. The structure of our proof will thus be as follows — we'll show that each set is a subset of the
other, then we'll use the previous lemma to conclude the proof.

Let's begin by showing that (A U B) — (A N B) € A A B. Since this acts as a stepping stone toward the larger
proof, we'll pose it as a lemma.

Lemmal: AUB)—(ANB)C AAB.
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How might we prove this lemma? To do so, we'll just call back to the definitions of union, intersection, dif -
ference, and symmetric difference:

Proof of Lemma 1: We will show that for any x € (AU B) — (AN B), x € A A B. So consider any

x € (AUB)- (AN B). This means that x€ AU B,butx¢ AN B. Since x € AU B, we know that

x€ AorxeB. Since x ¢ AN B, we know that x is not contained in both A and B. We thus have that
x is in at least one of A and B, but not both. Consequently, x € A A B. Since our choice of x was ar-
bitrary, we therefore have that (AUB)—(ANB)CAAB

The other direction also will be a lemma for the same reasons. Here's the lemma and the proof:

Lemma 2: AABC (AUB)-(ANB)

This proof is a little bit more involved because there are two completely separate cases to consider when
dealing with elements of A A B. The proof is below:

Proof of Lemma 2: We will show that for any x € A A B, x € (AU B) — (A N B). Consider any
x€ AAB. Theneitherxe Aand x ¢ B, or x € Band x ¢ A. We consider these cases separately:

Case I:xe Aand x ¢ B. Sincex€ A,x€ AUB. Since x ¢ B, x ¢ AN B. Consequently,
x€(AUB)-(ANB).

Case2: xe Bandx ¢ A. Sincexe B,xe€ AUB. Since x ¢ A, x ¢ AN B. Consequently,
x€(AUB)-(ANB).

In either case, x € (A U B) — (A N B). Since our choice of x was arbitrary, we have that
AABC(AUB)—-(ANnB). N

Now that we have these two lemmas, the proof of the general result is surprisingly straightforward:

Proof of Theorem: By Lemma 1, (AUB)-(ANB)C AAB. By Lemma 2,
AABC (AUB)- (AN B). Since each set is a subset of the other, by our earlier lemma we have that
(AUB)-(ANnB)=AAB 1

That's all that we have to show!

Before we move on to show more applications of the lemma, let's take a minute to examine the proof of
Lemma 2. I've reprinted it below:
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Proof of Lemma 2: We will show that for any x € A A B, x € (AU B) — (A N B). Consider any
x€ AAB. Theneitherxe Aand x ¢ B, or x € Band x ¢ A. We consider these cases separately:

Case I:xe Aand x ¢ B. Sincex€ A,x€ AUB. Since x ¢ B, x ¢ AN B. Consequently,
x€(AUB)-(ANnB).

Case2:xe Bandx ¢ A. Sincexe€ B,xe€ AUB. Since x ¢ A, x ¢ AN B. Consequently,
x€(AUB)-(ANnB).

In either case, x € (A U B) — (A N B). Since our choice of x was arbitrary, we have that
AABC(AUB)—-(ANnB). N

Notice the similarity between Case 1 and Case 2. These two cases are virtually identical, except that we've
interchanged the role of the sets A and B. If you'll notice, there really isn't anything in the above proof to
suggest that set A is somehow “more important” than set B. If we interchange set A and set B, we change
the sets (AU B)— (AN B)and A A Bto the sets (BU A) — (BN A) and B A A. But these are exactly the sets
we started with! In a sense, because there really isn't an appreciable difference between A and B, it seems
silly to have two completely different cases dealing with which sets x is contained in.

This situation — in which multiple parts of a proof end up being surprisingly similar to one another — is fairly
common, and mathematicians have invented some shorthand to address it. Mathematicians often write
proofs like this one:

Proof of Lemma 2: We will show that for any x € A A B, x € (AU B) — (A N B). Consider any
x€AAB. Theneitherx € Aand x ¢ B, or x € Band x ¢ A. Assume without loss of generality that
xeAandx ¢ B. Sincexe A, xe AUB. Sincex¢ B,x¢ ANB, sox € (AUB)- (AN B). Since our
choice of x was arbitrary, we have that AABC(AUB)-(ANB). A

Notice the use of the phrase “without loss of generality.” This phrase indicates in a proof that there are sev-
eral different cases that need to be considered, but all of them are identical to one another once we change
the names around appropriately. If you are writing a proof where you find multiple cases that seem identical
to one another, feel free to use this phrase to write the proof just once. That said, be careful not to claim
that you haven't lost generality if the cases are actually different from one another!

As another example of a proof using “without loss of generality,” let's consider the following theorem, which
has nothing to do with sets:

Theorem: If m and n have opposite parity, m + n is odd.

We can check this pretty easily — 3 + 4 =7, which is odd, 137 + 42 =179, which is odd, etc. How might we
prove this? Well, there are two cases to consider — either m is even and » is odd, or m is odd and 7 is even.
But these two cases are pretty much identical to one another, since m + n = n + m and it doesn't really matter
whether it's m or n that's odd. Using this, let's write a quick proof of the above result:
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Proof: Without loss of generality, assume that m is odd and 7 is even. Since m is odd, there exists an
integer r such that m = 2r + 1. Since 7 is even, there exists an integer s such that n = 2s. Then
m+n=2r+1+2s=2(r+s)+ 1. Consequently, m + n is odd. l

This proof is about half as long as it would be otherwise.

2.2.4 Proofs with Vacuous Truths

To see if we can get some more mileage out of our lemma about set equality, let's try proving some more re-
sults about sets. Let's consider the following result:

Theorem: For any sets A and B, if A C B, then A— B=0.

Now, how might we prove this? Right now, the main tool at our disposal for proving two sets are equal is to
show that those two sets are subsets of one another. In other words, to prove the above result, we might try
proving two lemmas:

Lemma 1: For any sets A and B, if A C B,then @ C A — B.
Lemma 2: For any sets A and B, if A C B,then A— B C @.

Okay, let's set out to prove them. Let's begin by trying to prove lemma 1. To do this, we need to show that
every element of the empty set is also contained in A — B. But wait a minute — this doesn't make any sense,
since there aren't any x € @! But not to worry. If you'll recall from Chapter 1, we introduced the idea of a
vacuous truth, a statement that is true because it doesn't apply to anything. Fortunately, that's exactly what
we have right here — there aren't any elements of the empty set, so it's vacuously true that every element of
the empty set is also contained in A — B, regardless of what A and B actually are. After all, it's also true that
every element of the empty set is made of fire, that every element of the empty set is your best friend,” etc.

How do we formalize this in a proof? Well, we can just say that it's vacuously true! This is shown here:

Proof of Lemma 1: We need to show that every element x € @ also satisfies x € A — B. But this is
vacuously true, as there are no x satisfying x € @. ll

Well, that was surprisingly straightforward. On to the second lemma!

At first glance, this statement doesn't seem to make any sense. There are no elements of the empty set, so
how could something be a subset of the empty set? This would only happen if there are no elements in the
first set, since if there were some element x € A — B, then it would have to be true that x € @, which we
know to be impossible. This actually gives us a hint about how to approach the problem. We know that we
shouldn't be able to find any x € A — B, so one route for proving that A — B C @ is to directly show that the
statement “for any x € A — B, x € @” is vacuously true. This is shown below:

*  Saying “every element of the empty set is your best friend” is not the same as saying “the set of your best friends is the empty set.” The former
is a vacuous truth. The latter is a mathematical insult.
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Proof of Lemma 2: We need to show that any x € A — B also satisfies x € . Consider any x € A — B.
This means that x € A and x ¢ B. Since A C B and since x € A, we know that x € B. But this means
simultaneously that x € B and x ¢ B. Consequently, there are no x € A — B, so the claim that any

x € A — B also satisfies x € @ is vacuously true. ll

Notice the structure of the proof. We begin by using definitions to tease apart what it means for an element
to be in A — B, then show that, in fact, no elements can be in this set. We conclude, therefore, that the entire
lemma must be vacuously true.

We can use these two lemmas to complete the proof:

Proof of Theorem: Consider any sets A and B such that A € B. By Lemma 1, we have that
@ C A-B. By Lemma 2, we have that A — B C @. Thus by our earlier lemma, A — B = as re-
quired. H

2.3 Indirect Proofs

The proofs that we have done so far have directly shown that a particular statement must be true. We begin
with a set of assumptions, then manipulate those assumptions to arrive at a desired conclusion. However,
there is an entirely different family of proof techniques called indirect proofs that indirectly prove that some
proposition must be true.

This may seem a bit strange at first, but there are many familiar analogs in real life. For example, suppose
that you're biking to class and can't remember whether or not you brought your keys with you. You could
directly prove whether you have your keys on you by stopping, getting off your bike, and checking your
pockets or purse for your keys. But alternatively, you could use the following line of reasoning. Assuming
that you lock your bike (which you should!), you couldn't have unlocked your bike in the first place if you
didn't have your keys. Since you definitely unlocked your bike — after all, you're riding it! — you must have
your keys with you. You didn't explicitly check to see that you have your keys, but you can be confident that
you do indeed have them with you.

In this section, we'll build up two indirect proof techniques — proof by contradiction, which shows that a
proposition has to be true because it can't be false, and proof by contrapositive, which proves that P implies
Q by proving that an entirely different connection holds between P and Q.

2.3.1 Logical Implication

Before we can move on to talk about proofs by contradiction and contrapositive, we need to discuss logical
implication. Many of the proofs that we have done so far are proofs of the form

If P, then Q.
For example, we have proven the following:
If x is even, then x” is even.
If m is even and n is odd, then mn is even.
If m and n have the same parity, then m + n is even.

If n is even and m is an integer, then n + m has the same parity as m.
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If ACB,then A-B=0.

In structuring each of these proofs, the general format has been as follows: first, we assume that P is true,
then we show that given this assumption Q must be true as well. To understand why this style of proof
works in the first place, we need to understand what the statement “If P, then Q” means. Specifically, the
statement “If P, then Q” means that any time P is true, Q is true as well. For example, consider the state-
ment

If xe A, thenxe AUB.

This statement says that any time that we find that x is contained in the set A, it will also be contained in the
set AU B. If x ¢ A, this statement doesn't tell us anything. It's still possible for x € A U B to be true, namely
if x € B, but we don't have any guarantees.

Let's try this statement:
If I pet the fuzzy kitty, I will be happy.

This tells us that in the scenario where I pet the fuzzy kitty, it's true that I will be happy. This doesn't say
anything at all about what happens if I don't pet the kitty. I still might be happy (perhaps I petted a cute
puppy, or perhaps Stanford just won another football game).

The general pattern here is that a statement of the form
If P, then Q.

only provides information if P is true. If P is true, we can immediately conclude that Q must be true. If P is
false, Q could be true and could be false. We don't have any extra information.

An important point to note here is that implication deals purely with how the truth or falsity of P and Q are
connected, not whether or not there is a causal link between the two. For example, consider this (silly) state-
ment:

If T will it to be true, then 1 + 1 = 2.

Intuitively, this statement is false: 1 + 1 = 2 because of the laws of mathematics, not because I consciously
wish that it is! But mathematically, the statement is true. If I want 1 + 1 = 2 to be true, you will indeed find
that 1 + 1 =2. You'll find 1 + 1 = 2 regardless of whether or not I want it to be. Consequently, the state -
ment “If I will it to be true, 1 + 1 =2” is always true.

Why discuss these (seemingly pedantic) details at all? The reason for this is to make clear what exactly it
means for an implication to be true so that we can discuss what it means for an implication to be false. The
statement “If P, then Q” is true if whenever we find that P is true, we also find that Q is true. In order for the
statement “If P, then Q” to be false, we have to find an example where P is true (meaning that we expect Q
to be true as well), but to our surprise found that Q actually is false. For example, if we wanted to disprove
the claim

If x + y is even, then x is odd.

we would have to find an example where x + y was even, but x was not odd. For example, we can take x =2
and y = 2 as a counterexample, since x + y = 4, but x is not odd. However, if we were to take something like
x =3 and y = 2, it would not be a counterexample: 3 + 2 is not even, so the above claim says nothing about
what's supposed to happen.

It's important to make this distinction, because it's surprisingly easy to think that you have disproven an im-
plication that's perfectly true. For example, consider the statement

IfACB,then A-B=0
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What happens if we take the sets A = {1, 2} and B = {3}? Then the statement A C B is false, as is the state-
ment A — B= . However, we have not contradicted the above statement! The above statement only tells us
something about what happens when A C B, and since A isn't a subset of B here, the fact that A — B # @
doesn't matter.

2.3.2 Proof by Contradiction

One of the most powerful tools in any mathematician's toolbox is proof by contradiction. A proof by con-
tradiction is based on the following logical idea: If a statement cannot possibly be false, then it has to be
true.

In a proof by contradiction, we prove some proposition P by doing the following:

1. Assume, hypothetically, that P is not true. This is the opposite of what we want to prove, and so we
want to show that this assumption couldn't possibly have been correct.

2. Using the assumption that P is false, arrive at a contradiction — a statement that is logically impossi-
ble.

3. Conclude that, since our logic was good, the only possible mistake we could have made would be in
assuming that P is not true. Therefore, P absolutely must be true.

Let's see an example of this in action. Earlier, we proved the result that if 7 is even, then n* must be even as
well. It turns out that the converse of this is true as well:

Theorem: If n” is even, then n is even.

Empirically, this seems to pan out. 36 is even, and 36 = 67, with 6 even. 0 is even, and 0 = 0%, with 0 even
as well. But how would we actually prove this? It turns out that this is an excellent use case for a proof by
contradiction.

To prove this statement by contradiction, let's assume that it's false, which means that the statement “If n* is
even, then n is even” is incorrect. As we just saw, this would have to mean that n* is even, but 7 itself is odd.
Is this actually possible?

The answer is no — if n were odd, then n* would have to be odd as well. However, one of the assumptions
we made was that n” is even. This contradiction tells us that something is wrong here. The only thing ques-
tionable we did was making the assumption that n is odd with n* even. Consequently, we know that this
combination must be impossible. Therefore, if n” is even, we know that n is even as well.

We can formalize this in a proof as follows:

Proof : By contradiction; assume that »” is even but that 7 is odd. Since 7 is odd, n = 2k + 1 for some
integer k. Therefore n* = (2k + 1)* = 4k* + 4k + 1 = 2(2k* + 2k) + 1. This means that n* is odd, con-
tradicting the fact that we know that »” is even. We have reached a contradiction, so our assumption

must have been wrong. Therefore, if 7n” is even, n must be even. B

Let's look at this proof in more depth. First, note how it starts off:
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By contradiction; assume that n* is even but that 7 is odd.

This sets up how we are going to approach the proof. We state explicitly that we are going to attempt a
proof by contradiction. We immediately then say what assumption we are going to make. Here, since we
want to contradict the statement “If »n” is even, n is even,” we say that the contradiction is that n* is even, but
n is odd.

Once we have set up the proof by contradiction, the remainder of our proof is a quest to show that this as-
sumption has to have been wrong by deriving a contradiction. The middle section of the proof does just that
— it arrives at the conclusion that n* has to be both odd and even at the same time.

Now that we have our contradiction, we can finish the proof by stating that this contradiction means that
we're done:

We have reached a contradiction, so our assumption must have been wrong. Therefore, if n* is even,
n must be even. B

All proofs by contradiction should end this way. Now that you have the contradiction, explain how it means
that the initial assumption was wrong, and from there how this proves the overall result.

Proof by contradiction is a powerful tool. We saw this used in Cantor's theorem in the last chapter (though,
admittedly, we haven't seen the formal proof yet), and you will see it used later to prove that several specific
important problems cannot be solved by a computer. For now, let's build up some other small examples of
how this proof technique can be used.

One interesting application of proofs by contradiction is to show that some particular task cannot be accom-
plished. Consider the following problem:

You have 2,718 balls and five bins. Prove that you cannot distribute all of
the balls into the bins such that each bin contains an odd number of balls.

This problem seems hard — there are a lot of ways to distribute those balls into the bins, though as you'll see
there's no way to do it such that every bin has an odd number of balls in it. How might we show that this
task is impossible? Using the idea of a proof by contradiction, let's start off by hypothetically assuming that
you can indeed solve this. Could we then show that this solution leads to some sort of contradiction? In-
deed we can. Think of it this way — if we have an odd number of balls in the five bins, then the total number
of balls placed into those bins would have to be equal to the sum of five odd numbers. What numbers can
you make this way? Well, if we add up two odd numbers, we get an even number (because we know that
the sum of two numbers with the same parity is even). If we add up two more of the odd numbers, we get
another even number. The sum of those two even numbers is even. If we then add in the last odd number
to this even number, we get an odd total number of balls. This is extremely suspicious. We know that the
total number of balls has to be odd, because we just proved that it has to. At the same time, we know that
there are 2,718 balls distributed total. But this would imply that 2,718 is odd, which it most certainly is not!
This is a contradiction, so something we did must have been wrong. Specifically, it has to have been our as-
sumption that we can distribute all of the balls such that each bin has an odd number of balls in it. There-
fore, there can't be a solution.

This argument is formalized below as a proof:



Chapter 2: Mathematical Proof

Proof: By contradiction; assume that there is a way to distribute all 2,718 balls into five bins such that
each bin has an odd number of balls in it. Consider any such way of distributing the balls, and let the
number of balls in the five bins be a, b, ¢, d, and e. Writethesuma+ b+ c+d+ e as

((a+ b) + (c + d)) + e. Since all five numbers have the same parity, both (a + b) and (c + d) are
even. Since (a + b) and (c + d) have the same parity, ((a + b) + (¢ + d)) must be even. Then, since
((a+ b) + (c + d)) is even, the sum ((a + b) + (¢ + d)) + e must have the same parity as e. Since e is
odd, this means that sum of the number of balls in the five bins is odd, contradicting the fact that
there are an even number of balls distributed across the bins (2,718). We have reached a contradic-
tion, so our initial assumption must have been wrong and there is no way to distribute 2,718 balls into
five bins such that each bin has an odd number of balls. Il

As an aside, I absolutely love this proof. It pulls together our discussion of direct proofs with parities along
with proof by contradiction.

Before we move on, though, let's examine the structure of this proof one more time. Note that it has the
same shape as the previous proof. We begin by stating that the proof is by contradiction and what that con-
tradiction is. We then derive a contradiction, and conclude by saying that the contradiction proves the origi-
nal theorem.

Here is yet another example of a classic proof by contradiction. Consider a standard 8 x 8 chessboard:

Now, suppose that we cut off two diagonally opposite corners, as shown here:

Suppose that we want to cover this chessboard with a set of 2 x 1 dominoes. These dominoes can be posi-
tioned horizontally or vertically, but never diagonally. Additionally, we cannot stack the dominoes on top of
one another. The question is this — is it possible to cover every square on the modified chessboard with
dominoes? Interestingly, the answer is no. It's impossible to do so.

So why is that? Well, let's approach this from the perspective of a proof by contradiction. Suppose, hypo-
thetically, that we can cover the chessboard with dominoes. Since each domino covers two horizontally or
vertically adjacent squares, we know for a fact that each domino covers exactly one white square and exactly
one black square. Moreover, since no two dominoes can stack atop one another, if we add up the total num-
ber of white squares covered by each domino and the total number of black squares covered by each
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domino, we should get the total number of white and black squares on the chessboard. But this is where we
run into trouble. If each domino covers one white square and one black square, then the total number of
white squares and black squares covered should have to be the same. Unfortunately, this isn't true. A stan-
dard chessboard has the same number of white and black squares. When we removed two opposite corners,
we took away two white squares (check the picture above). This means that there are, in fact, two more
black squares than white squares, contradicting the fact that we were supposed to have the same number of
white squares and black squares. This means (again!) that our assumption was wrong, and that there must
be no solution to this puzzle.

Formalized as a proof, the above argument looks like this:

Theorem: There is no way to tile an 8 x 8 chessboard missing two opposite corners with dominoes
such that each domino is aligned horizontally or vertically and no two dominoes overlap.

Proof: By contradiction; assume that such a tiling exists. Since each domino is aligned horizontally
or vertically across two tiles, each domino covers the same number of white and black squares. Since
no two dominoes overlap, each square is covered by exactly one domino. Consequently, the number
of white squares on the chessboard and the number of black squares on the chessboard should equal
the number of dominoes. In turn, this means that the number of white squares and black squares on
the chessboard must be equal. But this is impossible — there are 30 white squares and 32 black
squares, and 30 # 32. We have reached a contradiction, so our assumption must have been incorrect.
Thus there is no solution to the puzzle. B

2.3.3 Rational and Irrational Numbers

In computer science we commonly work with the natural numbers or integers because our computers are
digital. However, the real numbers are quite important in mathematics, and it would be a disservice to them
if we didn't spend at least a little time exploring their properties.

To begin with, we should make a distinction between two different types of real numbers — the rational
numbers and the irrational numbers. Intuitively, rational numbers are real numbers that can be expressed as
the ratio of two integers. For example, any integer is rational, because the integer x is the ratio x / 1. Num-
bers like "/, and ¥/, are also rational. Formally, we define the rational numbers as follows:

A real number r is called rational if there exist integers p and g such that g # Oand p/ g =r.

Let's take a minute to see what this says. We're going to say that a number r is rational if there is some way
that we can find two integers p and g where ¢ isn't zero and p / g = r. We're going to require that g # 0 so
that we can safely use it as the denominator in the fraction. Note that p can be zero, because we'd like
0 ="/, to count as a rational number.

An important property of this definition is that we say r is rational if there is some way to write r = p / g for
integers p and g. Note that there can actually be many different ways to do this. As an example, we can
write 2 =2/, or 2 = 2/, or 2 = %/, etc. For reasons that will become clearer in a moment, we often use the
following property of rational numbers:
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Any rational number r can be written as r = p / ¢, where p and ¢ are integers, g # 0, and p and g have
no common factors other than 1.

This statement essentially states that if r is rational, we can write out  in “simplest form” by writing out r as
a fraction that cannot be simplified. For example, when we write 1.5 = %4, we can simplify the fraction
down to 1.5 = */, because 6 and 4 have 2 as a common factor. However, we can't simplify */,, because the
only common factors of 3 and 2 are 1. Note that we could also write 1.5 = 7/, and say that it is in “sim-
plest form” because the only common factors of -3 and -2 are +1. This is certainly a less “pretty” fraction,
though according to the above statement we'll consider it to be in simplest form.

One more definition is in order:

The set { » | r € R and r is rational }, the set of all rational numbers, is denoted Q.

From the definition of Q, it's clear that Q € R. However, is it true that Q@ = R? That is, is every real num-
ber rational? It turns out that the answer to this question is “no.” There are many ways to show this using
advanced mathematics, but one simple solution is to find an explicit example of an irrational number. It's
not all that hard to find an example of an irrational number — numbers like e and  are irrational, for exam-
ple — but to actually prove that these numbers are irrational is surprisingly difficult. Instead, we'll focus on a
simple example of a number known to be irrational: V2.

Let's go prove the following theorem, which is a beautiful example of a proof by contradiction:

Theorem: \/ 5 1s irrational.

How exactly can we show this? As you might have guessed from where we are right now, this is a good spot
for a proof by contradiction. Let's suppose, for the sake of contradiction, that V2 actually is rational. This
means that we can find integers p and ¢ such that g #0, p/ g = V2, and p and g have no common factors
other than 1 and -1 (that is, they're the “simplest” such p and g that we can use). What to do next? Well, ul-
timately we're going to try to derive some sort of contradiction. Right now, though, it's not clear what ex-
actly that will be. That's fine, though. Let's just explore around a bit and see if we find anything interesting.
If we do, great! We're done. If not, we can back up and try something else.

Let's start off with some simple algebraic manipulations. Since we have that

plq= V2
We can square both sides to get
plg=2
If we then multiply both sides by ¢, we get
P’ =24

What does this tell us? For one thing, we know that p* has to be an even number, since ¢ is an integer and
p’is twice ¢°. But if you'll recall, one of the first proofs we did by contradiction was the proof that if »” is
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even, then n must be even as well. Since p” is even, this means that p has to be even as well. This tells us
that p = 2k for some integer k.

We've just shown that if p/ g = V2 , then p has to be even. What can we do with this? Looking above,
we've shown that p* = 2¢°>. What happens if we plug in 2k in place of p? This gives us

(2k)* =24
4 =24
2k2 - q2

This last line tells us that ¢* has to be even as well, since it's twice k> and &” is an integer. It's at this point
that we can see that something unusual is up. Using our previous result, since ¢” is even, ¢ has to be even as
well. But then both p and g are even, which means that they have to be divisible by two — contradicting the
fact that p and ¢ can't have any divisors other than 1 and -1!

In short, our proof worked as follows. Starting with p / g = V2, we showed that p had to be even. Since p
was even, g had to be even as well, meaning that p and g weren't simplified as far as possible. In fact, there's
no possible way for them to be simplified — we've shown that whatever choice of p and g you make, they can
always be simplified further. This contradicts Rule 3 of rational numbers, and so V2 has to be irrational.
This logic is formalized here in this proof:

Proof: By contradiction; assume that V2 is rational. Then there exist integers p and g such that
q#0,p/q= V2, and p and g have no common divisors other than 1 and -1.

Since p/ g = /2 , this means that p* / ¢* = 2, which means that p* = 2¢>. This means that p is even,
so by our earlier result p must be even as well. Consequently, there exists some integer k such that
p ="2k.

Since p = 2k, we have that 2¢° = p* = (2k)* = 4k%, so ¢* = 2k>. This means that ¢’ is even, so by our
earlier result ¢ must be even as well. But this is impossible, because it means that p and g have 2 as a
common divisor, contradicting the fact that p and ¢ have no common divisors other than 1 and -1.

We have reached a contradiction, so our assumption must have been incorrect. Thus \/ 2 1isirra-
tional. Il

We now have our first example of a number that we know is not rational. This alone is enough to prove that
Q # R. However, is V2 the only irrational number? Or are there more irrational numbers like it? It turns
out that a great many numbers are irrational; in fact, there are infinitely more irrational numbers than ratio-
nal numbers! We'll prove this later on in Chapter 6 when we discuss the nature of infinity.

2.3.4 Proof by Contrapositive
There is one final indirect proof technique that we will address right now — proof by contrapositive.

To motivate a proof by contrapositive, let's return to our discussion of mathematical implication. Consider
the following statement:

If I close the windows, the velociraptors can't get inside.
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This statement says that whenever we know that the windows are closed, we know that the velociraptors
won't be able to get inside. Now, let's suppose that we know that, unfortunately, the velociraptors did indeed
get inside. What could we conclude from this? We know that I certainly didn't close the windows — if I had
closed the window, then the raptors wouldn't be inside in the first place!

Let's try another example. Suppose that we know that
IfACB,thenA-B=0.

Suppose we find two sets A and B such that A — B # @. What can we conclude? Here, we can say that A is
not a subset of B, because if it were, then A — B would have been equal to 9.

There seems to be a pattern here. It seems like if we know that the statement “If P, then Q” is true and we
know that Q is false, then we know that P must be false as well. In fact, that's exactly correct. Intuitively,
the rationale is that if P implies Q and Q is false, P couldn't be true, because otherwise Q would be true.
Given any implication “If P, then Q,” its contrapositive is the statement “If not Q, then not P.” The contra-
positive represents the above idea that if Q is false, P has to be false as well.

It's getting a bit tricky to use phrases like “If P, then Q" repeatedly through this text, so let's introduce a bit
of notation. We will use the notation P — Q to mean that P implies Q; that is, if P, then Q. Given an impli-
cation P — Q, the contrapositive is not Q0 — not P.

The contrapositive is immensely useful because of the following result:

Theorem: If not Q — not P, then P — Q.

This theorem is very different from the sorts of proofs that we've done before in that we are proving a result
about logic itself! That is, we're proving that if one implication holds, some other implication must hold as
well! How might we go about proving this? Right now, we have two techniques at our disposal — we can
proceed by a direct proof, or by contradiction. The logic we used above to justify the contrapositive in the
first place was reminiscent of a proof by contradiction (“well, if Q is false, then P couldn't be true, since oth-
erwise Q would have been true.”). Accordingly, let's try to prove this theorem about the contrapositive by
contradiction.

How might we do this? First, let's think about the contradiction of the above statement. Since we are con-
tradicting an implication, we would assume that not Q — not P, but that P — Q is false. In turn we would
ask: what does it mean for P — Q to be false? This would only be possible if P was true but Q was not. So
at this point, we know the following:

1. not Q — not P.
2. Pistrue.
3. Qis false.

And now all of the pieces fall into place. Since Q is false, we know that not Q is true. Since not Q implies
not P, this means that not P is true, which in turn tells us that P should be false. But this contradicts the fact
that P is true. We've hit our contradiction, and can conclude, therefore, that if not Q — not P, then P — Q.

Here is a formal proof of the above:
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Proof: By contradiction; assume that not Q — not P, but that P — Q is false. Since P — Q is false,
we know that P is true but Q is false. Since Q is false and not Q — not P, we have that P must be
false. But this contradicts the fact that we know that P is true. We have reached a contradiction, so
our initial assumption must have been false. Thus if not Q — not P, then P — Q. &

This proof has enormous importance for how we can prove implications. If we want to prove that P — Q,
we can always instead prove that not Q — not P. This then implies P — Q is true.

Let's work through an example of this. Earlier we proved the following result:

Theorem: If n” is even, then n is even.

Our proof proceeded by contradiction. What if we wanted to prove this result by contrapositive? Well, we
want to show that if n* is even, then n is even. The contrapositive of this statement is that if 7 is not even,
then n* is not even. More clearly, if 7 is odd, then n” is odd. If we can prove that this statement is true, then
we will have successfully proven that if n* is even, then n is even. Such a proof is shown here:

Proof: By contrapositive; we prove that if 7 is odd, then n* is odd. Let n be any odd integer. Since n
is odd, n = 2k + 1 for some integer k. Therefore, n* = (2k + 1)* = 4k*> + 4k + 1 = 2(2k* + 2k) + 1.
Thus »* is odd. W

Notice the structure of the proof. As with a proof by contradiction, we begin by announcing that we're go-
ing to use a proof by contrapositive. We then state the contrapositive of the statement that we want to prove,
both so that readers know what to expect and so that we're clear on what we want to show. From there, we
proceed just as we would in a normal proof — we need to show that if n is odd, n* is odd, and so we assume
that n is odd and proceed from there. The result is a remarkably clean and elegant proof.

Here's another example of a proof by contrapositive: suppose that we have 16 objects that we want to dis-
tribute into two bins. There are many ways that we might do this — we might split them evenly as an 8/8
split, or might put all of them into one bin to give a 16/0 split, or might have something only a bit lopsided,
like a 10/6 split. Interestingly, though, notice that in each case we have at least one bin with at least 8 ob-
jects in it. Is this guaranteed to happen? Or is it just a coincidence?

It turns out that this isn't a coincidence, and in fact we can prove the following:

Theorem:If m + n=16,thenm =8 orn = 8.

To prove this by contrapositive, we first need to figure out what the contrapositive of the above statement is.
Right now, we have the following:

m+n=16—-m=8orn=8§
The contrapositive of this statement is

not (m =8 orn=8) — not (m+n=16)
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Hmmm... that's not very easy to read. Perhaps we can simplify it. Let's start with the right-hand side. We
can simplify not (m + n = 16) to the easier m + n # 16. This gives

not(m=8orn=8) »>m+n+16

But what about the first part? This is a bit more subtle. What is the opposite of m = 8 or n = 8?7 Well, this
statement is true if either m > 8 or n = 8, so for it to be false we need to ensure that both m > 8 and n > 8
are false. This would be true if m < 8 and n < 8. This gives us the final contrapositive of

m<8andn<8—-m+n+#16

The important takeaway point from this process is as follows — when determining the contrapositive of a
statement, be very careful to make sure that you understand how to negate things properly!

From here, the reason why the initial statement is true should be a bit clearer. Essentially, if both m and n
are too small, then their sum can't be 16. This is formalized below:

Proof: By contrapositive; we show that if m < 8 and n < 8, then m + n # 16. To see this, note that
m+n<8+n
<8+8
=16

Som +n<16. Consequently, m +n# 16.

2.4  Writing Elegant Proofs

We've now seen three approaches to writing proofs: direct proofs, which follow a logical train of thought to
show a conclusion; proof by contradiction, which assumes the opposite of what it wants to prove and shows
that this leads to impossible conclusions; and proof by contrapositive, which proves that P implies Q by prov-
ing that not O implies not P. We will use these proof techniques throughout the rest of our exploration of
the mathematical foundations of computing.

Although we've described the technical details of how to write proofs of this sort, we have not talked about
how to write elegant proofs in these styles. Proofs are like essays — you can express the same ideas in many
different ways, and depending on how you do it you can make it easier or harder for your reader to under-
stand what you're doing. This final part of the chapter explores techniques for writing good proofs and how
to determine that your proofs are correct.

2.4.1 Treat Proofs as Essays

Proofs are rigorous arguments intended to prove some point. The point of writing a proof is to convey a
mathematically rigorous argument. Your goal when writing a proof is not just to write down the argument,
but to help someone unfamiliar with the result see why it must be true. Well-written proofs make it easy for
others to understand your argument, while poorly-written proofs — even ones that have sound reasoning —
can actually prevent others from following your reasoning.

Approach writing proofs as you would writing essays. Describe what you're going to talk about before you
jump right into it. Give guideposts about where the proof is going so that a reader can tell what you are
planning on doing. If you have a long, complicated thought, break it down into smaller pieces (i.e. lemmas)
and explain each one individually.
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As an example, consider the following proof:

Theorem: If n is an even integer, then n” is an even integer.

Proof: (2k)* = 2(2k’) for any integer k. If we have a particular 2k*, we can write 2k> = r for some in-
teger r. If n is even, then n = 2k for some integer k. Therefore, n* = 2r for some integer 7. Wl

Make sense? Didn't think so. All of the right pieces of the proof are here, but they're so jumbled and disor-
ganized that it's almost impossible to determine what's being said here.

There are lots of things that are confusing about this proof: statements are introduced with no context or jus-
tification, the flow isn't clear at all, and the ultimate conclusion only makes sense if you skip around ran-
domly. Does that mean the logic isn't a valid? In this case, no; the logic is perfectly fine. However, the ar-
gument is extremely weak because it requires an intense effort on the part of the reader to see why it works
at all.

The standard proof of this result, which we saw earlier, more clearly lays out the steps in sequence. First,
we start by writing n = 2k for some integer k, because that's one of the few things we're assuming. Since we
want to talk about 77, it's reasonable to square both sides to get n* = (2k)’. We want to write n* as 2r for
some choice of r, so we can simplify the math by noting n* = (2k)* = 4k* = 2(2k*). And then we're done, be-
cause 2k” is an integer and n” is twice that integer. If we were to turn this line of reasoning into a proof, it
would be significantly easier to follow because it follows a reasonable narrative — at each point, it makes
sense to try the step we're about to try.

Logical flow is the main reason we start all our proofs by contradiction or contrapositive by saying some-
thing to the effect of “we proceed by contradiction” or “by contrapositive;” by doing so, we provide context
for what will follow so that the reader (often, you!) can tell where we're going.

2.4.2 Avoid Shorthand or Unnecessary Symbols

A lot of math involves working with symbols; at this point, we've seen all of the following symbols (and a
few more) used to denote specific concepts or quantities:

U-NAPONRZQE—C

Although mathematics relies on using precise symbols to denote precise concepts, that doesn't mean that a
proof should consist purely of symbols. Rather, a proof should be a piece of writing that conveys how dif -
ferent concepts relate to one another and how the truth of the overall theorem follows from those relations.
When you need to use symbols to convey an object or concept, such as the fact that A is a subset of B, it's
perfectly appropriate to write out A € B in symbolic notation, since the notation is specifically designed to
convey this. Similarly, if you want to talk about the set of all elements in at least one of A and B, it's best to
just write A U B. This is appropriate because ultimately you are trying to prove a mathematical result that it-
self is represented in mathematical notation.

On the other hand, you should try to avoid using mathematical notation to describe the structure of the argu-
ment. For example, you may have seen the symbols .. and - to mean “therefore” and “because.” These
symbols are commonly-used shorthands that are great for taking notes or writing something up on a white-
board. However, they can make proofs extremely dense. For example, consider the following proof, which
is technically correct but almost impossible to read.
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Theorem: If n is an even integer, then n” is even.

Proof:--neven, Ak € Zs.t. n=2k. -.n* =2k =2Q2k*. n*=202k*) = Ir€ Zs.t.n*=2r
C:r=2k>. ..n*even.

If you haven't seen some of the symbols or shorthands in this proof before, you can appreciate just how in-
scrutable this proof is. (In case it helps: 4 means “there exists,” the = symbol means “implies,” and s.t. is
shorthand for “such that.”) If you have seen these symbols, hopefully your initial response is “wow, that's re-
ally, really dense.”

Perhaps the best way to summarize the problem with this proof is that it's not inviting. This proof isn't try-
ing to help you understand what's going on; it's trying to save on space. You can think of it as “dehydrated
proof:” all the essential parts are there, but you're going to have to add water and stir for a long time before
you can rehydrate it back into an argument like this one:

Theorem: If n is an even integer, then n’ is even.

Proof: Because n is even, there is some integer k such that n = 2k. Therefore, n* = (2k)* = 2(2k°).
Consequently, there is an integer r (namely, 2k?) such that n* = 2r. Therefore, n” is even. ll

The argument has the same structure as the one given above, but it's much, much easier to read.

2.4.3 Write Multiple Drafts

Building off our proofs-are-essays metaphor, it's extremely valuable to sketch out a draft of a proof before
writing up your final version. If you start a proof without a clear sense of where you're going with it, you
will probably end up with a very convoluted line of reasoning that goes down a lot of unnecessary paths be -
fore arriving at the result. Consequently, we recommend writing out a draft of the proof, looking over it
critically, then rewriting it to be as clean as possible (and, possibly, repeating this process.)

When you have a first draft of a proof, we suggest tracing through the line of reasoning and checking it for
correctness (we'll discuss this in more detail a bit later on). If you're sure the proof is correct, we then rec-
ommend taking a look at what you've written and seeing how much of it is actually necessary to show the
overall result. Did you prove something you thought would be useful but didn't actually need? Leave it out
of the next draft! You can often shrink proofs significantly by using this approach, and the resulting proof
will be a lot more focused, easier to read, and less likely to contain extraneous (and potentially incorrect!)
details.

2.4.4 Avoid “Clearly” and “Obviously”

When you're writing a proof, you are trying to show a logical train of thought that establishes a result. Key
to doing so is the fact that you can back up all of the assertions you're making along the way. Usually, this
means manipulating definitions or combining together steps you took earlier in the proof.
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When writing proofs, it is extremely common to arrive at a point where you need to show a result that just
feels obvious, only to find that it's surprisingly hard to show. When this happens, it can be tempting to jus-
tify the result by writing “clearly, X is true” or “X is obviously true.” Resist the temptation to do this! When
someone is reading over your proof, words like “clearly” and “obviously” come across as belittling. The
reader might look at it and say “wow, apparently it's clearly true, but I guess I'm not smart enough to see
why...” or “something must be wrong with me, because / don't see this as obvious...” Given that the main
reason why you might want to mark something as “clearly” or “obviously” true is that it just seems true even
though you can't prove it, this sort of writing can often be perceived as insulting or condescending.

A good test for whether something is “clearly” or “obviously” true is the following: if you want to write
something to the effect of “clearly, X is true,” grab a pen or pencil and try to write out a proof of X on a
sheet of paper. If you can immediately sketch out a proof, then write that proof instead of claiming that X is
obvious so that others can follow how you know X is true. If you can't, then probably X isn't as obvious as
you might think it is, and you should take the time to work through the proof of X!

2.5 Chapter Summary

* A mathematical proof is a series of logical steps starting from a basic set of assumptions and arriv-

ing at a conclusion. Assuming the assumptions are valid and the logic is sound, the result is incon-
trovertibly true.

*  Proofs often involve lemmas, smaller proofs of intermediate results which then build into the overall
proof.

*  Proofs often involve cases, branches in the proof that cover different possibilities.

* The parity of an integer is whether it is even or odd. Parity interacts in interesting ways with addi-
tion and multiplication.

* Two sets are equal if and only if each set is a subset of the other.

* Logical implications are statements of the form “If P, then Q.” We denote this P — Q. Such a state-

ment means that whenever P is true, Q must be true as well, but say nothing about causality or cor-
relation.

* To disprove an implication, one finds a way for P to be true and Q to be false.

* A proof by contradiction works by assuming the opposite of what is to be shown, then deriving a
contradiction, a logically impossible statement.

* A number is called rational if it is the ratio of two integers, the second of which is not zero, which
share no common factors other than 1.

*  The contrapositive of the implication “If P, then Q” is the statement “If not Q, then not P.” A state-
ment is logically equivalent to its contrapositive.

* A proof by contrapositive proves an implication by proving its contrapositive instead.
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Chapter Exercises

Let's define the function max(x, y) as follows: if x < y, then max(x, y) = y; else, max(x, y) = x. For
example, max(1, 3) =3, max(2, 2) =2, and max(-7w, 137) = 137. Prove that the following holds for
any x, y, and z: max(x, max(y, z)) = max(max(x, y), z).

Let's define the absolute value function Ix| as follows: if x < O, then IxI = -x; otherwise,
IxI = x. Prove that Ixyl = Ixllyl.

Prove that mn is odd iff m is odd and # is odd.

Prove that if 7 is an integer and 7 is a multiple of three (i.e. n = 3k for some integer k), then n’ is a
multiple of three.

A number n called congruent to one modulo three iff n = 3k + 1 for some integer k and is called con-
gruent to two modulo three iff n = 3k + 2 for some integer k. Every integer is either a multiple of
three, congruent to one modulo three, or congruent to two modulo three. Prove that if # is an inte-
ger and n” is a multiple of three, then 7 is a multiple of three.

Prove that \/ § 1s irrational.

A triple of positive natural numbers (a, b, ¢) is called a Pythagorean triple if there is a right triangle
whose sides have length a, b, and ¢. Formally, a* + b* = ¢*. Some examples of Pythagorean triples
include (3, 4, 5), (5, 12, 13), and (7, 24, 25). Prove that if (a, b, ¢) is a Pythagorean triple, then at
least one of a, b, or ¢ must be even.

Prove that if (a, b, c) is a Pythagorean triple, then (a + 1, b + 1, ¢ + 1) is not a Pythagorean triple.
Prove that (a, a, b) is never a Pythagorean triple.

A natural number # is called a multiple of four iff there is some k € N such that n = 4k. For every
natural number n, exactly one of n, n + 1, n + 2, or n + 3 is a multiple of four. Prove that for any
natural number #, that either n* or n* + 3 is a multiple of four.

According to the World Bank, the population of Canada in 2011 was 34,482,779." Prove that there
are no natural numbers m and n such that m* + n> = 34,482,779.

Prove or disprove: if r is rational and s is irrational, then r + s is irrational.
Prove or disprove: r is rational iff -r is rational.

Prove or disprove: if r is irrational and s is irrational, then » + s is irrational. %
Prove or disprove: if r is irrational and s is irrational, then 7’ is irrational. %

Suppose you are having dinner with nine friends and want to split the bill, which is $44. Everyone
pays in dollar bills. Prove that at least two people in your group paid the same amount of money.

Suppose that A, B, and C are sets. Prove that (C—B)-A=C-(BUA).

Prove that for any sets A, B, and C, that (A A B) AC=A A (B A C). This shows that symmetric
difference is associative.

Provethat AN (BUC)=(ANB)UANCQO).
Provethat AU(BNC)=(AUB)N (AU Q).
Prove or disprove: If A = B, then g(A) = (B).

*  Source: http://www.google.com/publicdata/explore?
ds=d5bncppjof8f9 &met y=sp pop totl&idim=country:CAN&dl=en&hl=en&q=population+of+canada, as of September 30, 2012.



http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:CAN&dl=en&hl=en&q=population+of+canada
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:CAN&dl=en&hl=en&q=population+of+canada
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22.
23.
24.

25.

26.

27.

28.

29.

Prove or disprove: If (A) = g2(B), then A = B.
Prove that if A € Band B € C, then A C C. This shows that C is fransitive.

A right triomino is an L-shaped tile made of three squares. Prove that it is impossible to tile an
8 x 8 chessboard missing two opposite corners using right triominoes.

Is it ever possible to tile an n x n chessboard missing two opposite corners with right triominoes, as-
suming n = 3? If so, find an n for which it's possible. If not, prove that it's always impossible for
any n = 3.

Suppose that you have twenty-five balls to place into five different bins. Eleven of the balls are red,
while the other fourteen are blue. Prove that no matter how the balls are placed into the bins, there
must be at least one bin containing at least three red balls.

Suppose that you have a 3” x 3” x 3” cube of cheese (or 3cm x 3cm x 3cm if you live in a place
that uses a sane, rational system of measurements) that's subdivided into 27 1” x 1” x 1” smaller
cubes of cheese. A mouse wants to eat the cube of cheese and does so as follows: she first picks any
cube to eat first, then moves to an adjacent cube of cheese (i.e. a cube that shared a face with the
cube that was just eaten) to eat next. Is it possible for the mouse to eat the center cube of cheese
last? If so, show how. If not, prove it's impossible.” %

Consider the quadratic question ax® + bx + ¢ = 0, where a, b, and c are integers. Prove that if a, b,
and c are odd, then ax* + bx + ¢ = 0 has no rational roots (that is, there are no rational values of x
for which ax* + bx + ¢ = 0). As a hint, proceed by contradiction; assume that x = p / ¢ for some p
and ¢, then think about the parities of p and g. %

A Latin square is an n x n grid filled with the natural numbers 1 through »n such that every row and
every column contains each number exactly once. A symmetric Latin square is one where the square
is symmetric across the main diagonal; that is, the number at position (i, j) is equal to the number at
position (j, i).

Prove that in every symmetric Latin square, every natural number between 1 and n appears exactly
once on the main diagonal.

*

Adapted from Problem 4E of A Course in Combinatorics, Second Edition by Lint and Wilson.






Chapter 3 Mathematical Induction

In the previous chapter, we saw how to prove statements that are true for all objects of some type — all natu-
ral numbers, all real numbers, all chessboards, etc. So far, you have three techniques at your disposal: direct
proof, proof by contradiction, and proof by contrapositive.

Suppose that we restrict ourselves to proving facts about the natural numbers. The natural numbers have
many nice properties — no two adjacent natural numbers have any values between them, every natural num-
ber is even or odd, etc. — which makes it possible to prove things about the natural numbers using techniques
that do not apply to other structures like the real numbers, pairs of natural numbers, etc.

This chapter explores proof by induction, a powerful proof technique that can be used to prove various re-
sults about natural numbers and discrete structures. We will use induction to prove certain properties about
the natural numbers, to reason about the correctness of algorithms, to prove results about games, and (later
on) to reason about formal models of computation.

3.1 The Principle of Mathematical Induction

The principle of mathematical induction is defined as follows:

(The principle of mathematical induction) Let P(n) be a property that applies to natural numbers.
If the following are true:

P(0) is true
For any k € N, P(k) —» P(k + 1)

Then for any n € N, P(k) is true.

Let's take a minute to see exactly what this says. Suppose that we have some property P(n), perhaps P(n) is
“n is either even or odd”, or P(n) is “the sum of the first n odd numbers is n°.” We know two things about
P(n). First, we know that P(0) is true, meaning that the property is true when applied to zero. Second, we
know that if we ever find that P(k) is true, we will also find that P(k + 1) is true. Well, what would that
mean about P(n)? Since we know that P(0) is true, we know that P(1) must be true. Since P(1) must be
true, we know that P(2) must be true as well. From P(2) we get P(3), and from P(3) we get P(4), etc. In
fact, it seems like we should be able to prove that P(n) is true for arbitrary n by using the fact that P(0) is
true and then showing P(0), P(1), P(2), ..., etc. are all true

The principle of mathematical induction says that indeed we can conclude this. If we find some property
that starts true (P(0) holds) and continues to be true when started (P(k) — P(k + 1)), then we can conclude
that indeed P(n) will be true for all natural numbers 7.

Induction is very different from the other proof techniques we have seen before. It gives us a way to show
that some property is true for all natural numbers n not by directly showing that it must be true, but instead
by showing that we could incrementally build up the result one piece at a time.

We can find all sorts of examples of induction in the real world. Before we start working through formal
proofs by induction, let's see if we can build up an intuition for how induction works.
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As a simple example, consider climbing up a flight of stairs. How exactly do you get to the top? Well, we
know that you can climb up zero steps, since you can just stand at the base of the stairs and not go any-
where. Moreover, we know that if you're able to climb zero steps, you should also be able to climb one step
by climbing zero steps and then taking one step up. We also know that you can climb two steps, since you
can get up to the first step and then take one step to the second step. If you can get to the second step, you
can get to the third step by just taking one more step. Repeating this process, we can show that you can get
to the top of any staircase.

We could think about this inductively as follows. Let P(n) be “you can climb to the top of n stairs.” We
know that P(0) is true, because you can always climb to the top of zero stairs by just not moving. Further-
more, if you can climb to the top of & steps, you can climb to the top of k + 1 steps by just taking one more
step. In other words, for any k € N, P(k) implies P(k + 1). Using the principle of mathematical induction,
you could conclude that you can climb a staircase of any height.

3.1.1 The Flipping Glasses Puzzle

Consider the following puzzle: you are given five wine glasses, as shown here:

VULV

You want to turn all of the wine glasses upside-down, but in doing so are subject to the restriction that you
always flip two wine glasses at a time. For example, you could start off by flipping the first and last glasses,
as shown here:

(}KJKJ&)
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From here, we might flip the first and third glasses to get this setup:
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If you play around with this puzzle, though, you'll notice that it's tricky to get all of the wine glasses flipped
over. In fact, try as you might, you'll never be able to turn all of the wine glasses over if you play by these
rules. Why is that? Figuring the answer out requires a bit of creativity. Let's count how many wine glasses
are facing up at each step. Initially, we have five wine glasses facing up. After our first step, we flip two of
the wine glasses, so there are now three wine glasses facing up. At the second step, we have several options:

= — |

1. Flip over two glasses, both of which are facing up,
2. Flip over two glasses, both of which are facing down, or
3. Flip over two glasses, one of which is facing up and one of which is facing down.

How many wine glasses will be facing up after this step? In the first case, we decrease the number of wine
glasses facing up by two, which takes us down to one glass facing up. In the second case, we increase the
number of wine glasses facing up by two, which takes us to five glasses facing up. In the third case, the net
change in the number of wine glasses facing up is zero, and we're left with three glasses facing up.

At this point we can make a general observation — at any point in time, each move can only change the num-
ber of up-facing wine glasses by +2, 0, or -2. Since we start off with five wine glasses facing up, this means
that the number of wine glasses facing up will always be exactly 1, 3, or 5 — all the odd numbers between 0
and 5, inclusive. To solve the puzzle, we need to get all of the wine glasses facing down, which means we
need zero wine glasses facing up. But this means that the puzzle has to be impossible, since at any point in
time the number of upward-facing wine glasses is going to be odd.

The question now is how we can formalize this as a proof. Our argument is the following:
*  The number of upward-facing wine glasses starts off odd.

* At any point, if the number of upward-facing wine glasses is odd, then after the next move the num-
ber of upward-facing wine glasses will be odd as well.

The argument here is inherently inductive. We want to prove that the number of glasses starts odd, and that
if it starts odd initially it will stay odd forever. There are many ways to formalize the argument, but one idea
would be to prove the following for all natural numbers n:

Lemma: For any natural number 7, after n moves have been made, the number of upward-facing
glasses is an odd number.

The phrasing here says that no matter how many moves we make (say, n of them), the number of upward-
facing glasses will be odd. Given this lemma, it's extremely easy to prove that the puzzle is unsolvable.

So how exactly do we prove the lemma? In a proof by induction, we need to do the following:

1. Define some property P(n) that we want to show is true for all natural numbers 7.
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2. Show that P(0) is true.
3. Show that for any natural number £, if P(k) is true, then P(k + 1) is true as well.

Let's walk through each of these steps in detail. First, we'll need to come up with our property P(n). Here,
we can choose something like this:

Let P(n) be the statement “After n steps, there are an odd number of upward-facing glasses.”

Notice that our choice of P(n) only asserts that there are an odd number of upward-facing glasses for some
specific n. That is, P(4) just says that after four steps, there are an odd number of upward-facing glasses,
and P(103) just says that after 103 steps, there are an odd number of upward-facing glasses. This is per-
fectly normal in an induction proof. Mathematical induction lets us define properties like this one, then
show that the property is true for all choices of natural numbers n. In other words, even though we want to
prove that the claim is true for all natural numbers n, our property only says that the claim must be true for
some specific choice of n.

Now that we have our property, we need to prove that P(0) is true. In this case, that means that we have to
show that after O steps, there are an odd number of upward-facing glasses. This is true almost automatically
— we know that there are five upward-facing glasses to begin with, and if we make O steps we can't possibly
change anything. Thus there would have to be five upward-facing glasses at the end of this step, and five is
odd.

It seems almost silly that we would have to make this argument at all, but it's crucial in an inductive proof.
Remember that induction works by showing P(0), then using P(0) to get P(1), then using P(1) to get P(2),
etc. If we don't show that P(0) is true, then this entire line of reasoning breaks down! Because the entire in-
ductive proof hinges on P(0), P(0) is sometimes called the inductive basis or the base case.

When writing inductive proofs, you'll often find that P(0) is so trivial that it's almost comical. This is per-
fectly normal, and is confirmation that your property is not obviously incorrect. Always make sure to prove
P(0) in an inductive proof.

The last step in an induction is to show that for any choice of k € N, that if P(k) is true, P(k + 1) must be
true as well. Notice the structure of what we need to show — for any choice of k we must show that P(k) im-
plies P(k + 1). As you saw last chapter, to prove something like this, we'll choose some arbitrary natural
number k, then prove that P(k) — P(k + 1). Since our choice of n is arbitrary, this will let us conclude that
P(k) — P(k + 1) for any choice of k. In turn, how do we then show that P(k) — P(k + 1)? This statement is
an implication, so as we saw last chapter, one option is to assume that P(k) is true, then to prove P(k + 1).
This step of the proof is called the inductive step, and the assumption we're making, namely that P(k) is
true, is called the inductive hypothesis.

If you think about what we're saying here, it seems like we're assuming that for any &, P(k) is true. This is
not the case! Instead, what we are doing is supposing, hypothetically, that P(k) is true for one specific natu-
ral number k. Using this fact, we'll then go to show that P(k + 1) is true as well. Since the statements P(k)
and P(k + 1) are not the same thing, this logic isn't circular.

So we now have the structure of what we want to do. Let's assume that for some arbitrary natural number k
€ N, that P(k) is true. This means that after k steps, the number of upward-facing glasses is odd. We want
to show that P(k + 1) is true, which means that after k£ + 1 steps, the number of upward-facing glasses is odd.
How would we show this? Well, we're beginning with the assumption that after k steps there are an odd
number of upward-facing glasses. Let's call this number 2m + 1. We want to assert something about what
happens after k + 1 steps, so let's think about what that (k + 1)* step is. As mentioned above, there are three
cases:
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*  We flip two upward-facing glasses down, so there are now 2m + 1 —2 =2(m — 1) + 1 upward-facing
glasses, which is an odd number.

*  We flip two downward-facing glasses up, so there are now 2m + 1 + 2 =2(m + 1) + 1 upward-facing
glasses, which is an odd number.

*  We flip one upward-facing glass down and one downward-facing glass up, which leaves the total at
2m + 1 upward-facing glasses, which is also odd.

So in every case, if after k steps the number of upward-facing glasses is odd, then after k + 1 steps the num-
ber of upward-facing glasses is odd as well. This statement, combined with our proof of P(0) from before,
lets us conclude by mathematical induction that after any number of steps, the number of upward-facing
glasses is odd.

This line of reasoning can be adapted into a short and elegant formal proof by induction, which is shown
here:

Lemma: For any natural number #n, after n moves have been made, the number of upward-facing
glasses is an odd number.

Proof: By induction. Let P(n) be the statement “after » moves have been made, the number of up-
ward-facing glasses is an odd number.” We prove that P(rn) is true for all n € N by induction, from
which the lemma follows.

As our base case, we will prove P(0), that after 0 moves have been made, the number of upward-fac-
ing glasses is an odd number. After zero moves are made, the glasses are still in their initial configu-
ration. Since we begin with five upward-facing glasses, this means that after 0 moves, the number of
upward-facing glasses is five, which is odd.

For our inductive step, assume that for some k € N that P(k) is true and that after k moves have been
made, the number of upward-facing glasses is odd. We will prove P(k + 1), that after k + 1 moves
have been made, the number of upward-facing glasses is odd. Any sequence of k + 1 moves consists
of a sequence of k moves followed by any single move. So consider any sequence of k moves. By
our inductive hypothesis, after these k moves are made, the number of upward-facing glasses is odd;
let the number of upward-facing glasses be 2m + 1 for some m € N. Consider the (k + 1)* move.
This flips two glasses, and there are three cases to consider:

Case 1: We flip two upward-facing glasses down. This means there are now 2m + 1 — 2
=2(m — 1) + 1 upward-facing glasses, which is an odd number.

Case 2: We flip two downward-facing glasses up. This means there are now 2m + 1 + 2
=2(m + 1) + 1 upward-facing glasses, which is an odd number.

Case 3: We flip one downward-facing glass up and one upward-facing glass down. This means there
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are still 2m + 1 upward-facing glasses, which is an odd number.

Thus in each case, the number of upward-facing glasses after k + 1 steps is an odd number, so P(k +
1) holds. This completes the induction. ll

Take a minute to notice the structure of this proof. As with a proof by contradiction or contrapositive, we
begin by announcing that the proof will be by induction. We then define our choice of property P(n) that we
will prove correct by induction. Next, we announce that we are going to prove P(0), state what P(0) is, then
prove P(0) is true. Having done this, we then announce that we're going to assume that P(k) is true for some
choice of natural number k, and mention what this assumption means. We then state that we're going to
prove P(k) and what specifically this means that we're going to show. We then use the assumption of P(k) as
a starting point to prove P(k + 1), and proceed as in a normal proof. Finally, we conclude the proof by not-
ing that we've done a legal induction. Although the types of proofs you can do by induction vary greatly (as
you'll see in this chapter), the basic structure of an induction proof will almost always follow this general
template.

Given this lemma, we can formally prove that the flipping glasses puzzle is unsolvable:

Theorem: The flipping glasses puzzle has no solution.

Proof: By contradiction; suppose there is a solution. If this solution has » steps, then after the nth
step, all the glasses must be facing down. By our previous lemma, we know that an odd number of
glasses must be facing up. But this is impossible, since if all five glasses are facing down, then zero
are facing up, and zero is even. We have reached a contradiction, so our assumption must have been
wrong. Thus there is no solution to the puzzle. ll

3.2 Summations

One of the most common applications of induction is in simplifying summations. Summations arise fre-
quently in computer science when analyzing the growth rates of certain algorithms, in combinatorics when
determining how many objects there are of certain sizes, etc.

As an example, consider the selection sort algorithm, an algorithm for sorting a list of values into ascending
order. The algorithm works based on the following observation. If we remove the smallest element from
the list, we know that in the sorted ordering of the list it would appear at the front. Consequently, we can
just move that element to the front of the list, then sort what remains. We then move the smallest of the re-
maining elements to the second-smallest position, the smallest of what remains after that to the third-small-
est position, etc. As an example, suppose that we want to sort this list of values:

41032
We begin by removing the zero and putting it in the front of the list:
0 4132

Now, we sort what remains. To do this, we find the smallest element of what's left (the 1), remove it from
the list, and place it after the O:
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01 432
Repeating this moves the smallest element (2) to the result:
012 43
We then move the smallest value of what remains (3) to get
0123 4
and finally, we move the last element (4) to get the overall sorted sequence
01234

How efficient of a sorting algorithm is this? In order to answer this question, we need to find some way to
quantify how much work is being done. Once we've done that, we can analyze what that quantity is to deter-
mine just how efficient the overall algorithm is.

Intuitively, the selection sort algorithm works as follows;
*  While there are still elements left to be sorted:
*  Scan across all of them to find the smallest of what remains.
*  Append that to the output.

It seems that appending the smallest remaining value to the output is unlikely to take a lot of time (we'll talk
about this a bit more later). Scanning over each element to determine which element is smallest, on the
other hand, might take quite a bit of time.

As an example, suppose we want to sort one million integers. Using selection sort, we'd begin by scanning
over the entire list of one million elements to determine which was the smallest. Once we've done that, we
then scan over the 999,999 remaining elements to determine which of them is the smallest. After that, we
scan over the 999,998 remaining elements to determine which of them is the smallest, etc. This seems like
it's going to take a while, but just how much time is it going to take?

In order to sort a list of n values using selection sort, we need to scan n elements on the first round, then n —
1 on the second, n — 2 on the third, etc. This means that the total number of elements that we're going to
scan will be given by

n+n-H+(n-2)+...+3+2+1

What is this value equal to? Well, that depends on our choice of n. If we try this for small values of n, we
get the following:

*  When n =1, the sum is equal to 1.

e Whenn=2,thesumis1+2=3.

e Whenn=3,thesumisl +2+3=6.

e Whenn=4,thesumis1+2+3+4=10.

e Whenn=5,thesumis1 +2+3+4+5=15.

Is there some sort of trend here? As with most interesting parts of mathematics, the answer is definitely
“yes,” but what exactly is this trend? When confronted with a sequence like this one (1, 3, 6, 10, 15, ...)
where we can't spot an immediate pattern, there are many techniques we can use to try to figure out what the
sum is equal to. In fact, there are entire textbooks written on the subject.
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In this case, one option might be to try drawing a picture to see if we can spot anything interesting. Suppose
that we visualize each of the numbers as some quantity of blocks. We might draw 1 as one block, 2 as two
blocks, 3 as three blocks, etc. Suppose that we place all of these blocks next to one another, like this:

s BHHE

We now have a nice triangle shape to work with. If this were an actual triangle, we could try using the for-
mula A = Y2bh in order to compute the total area here. If we are summing n+ (n—1) + ... + 2 + 1, then the
base of the triangle has width n and the height has width n as well. According to the formula for the area of
a triangle, we'd therefore expect the number of blocks to be ¥2n>. Does this work? Unfortunately, no. The
first few values of Yn” are

0,05,2,45,8,125, ...
whereas the first few values of the sum of the first n positive natural numbers is

0,1,3,6, 10,15, ...

Why doesn't this reasoning exactly work? Well, if we superimpose a real triangle of width »n and height n on

.

top of our boxy triangle, we get this:

As you can see, our boxy triangle extends past the bounds of the real triangle by a small amount. This ac-
counts for why the sum of the first n positive natural numbers is a little bit bigger than Y2n’.

Although this doesn't exactly work out correctly, this geometric line of reasoning is actually quite interesting.
Why exactly is the area of a triangle equal to 2bh? One way to derive this is to start with any triangle we

like, perhaps this one:

then to draw a box around it, like this:
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If we then draw a vertical line downward through the apex of the triangle, we get the following picture:

Notice that in each of the two pieces of the box, half of the area is filled up! This means that if we take the
total area of the box (bh) and cut it in half, we should have the area of the triangle. Hence the area of the
triangle is Y2bh.

Could we use this sort of reasoning to figure out what our sum is equal to? Well, we already have this trian-
gle lying around:

So perhaps we could do something similar to our triangle example by putting this collection of boxes into a
larger box. Initially, we might try something like this:

In this picture, we can see that roughly half of the boxes in the large rectangle belong to our sum, while the
other half do not. We can therefore get a rough estimate for 1 + 2 + ... + n as being about n*>. However,
this is not an exact figure, because it's not an even split. For example, in the above figure, there are 21 boxes
from our original sum, and 15 boxes that we added.

Although the above drawing doesn't exactly work, it's very close to what we want. There are several tech-
niques we can use to fix it. One clever observation we can have is that the boxes we have added form a tri-
angle of width n — 1 and height » — 1, compared to our original triangle, which has width n and height ».
Given this, suppose that we pull off the last column of our triangle. This gives us the following picture:
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This picture gives us a very nice intuition for the sum. If we look at the rectangle on the left, we now have
that exactly half of the boxes are from our original sum and exactly half of the boxes are from the comple-
tion. This box has width n — 1 and height n, so of the n(n — 1) total boxes, one-half of them are from the
original sum. We also have one final column from our original sum, which has n boxes in it. This means
that we might expect 1 + 2 + ... + n to be equal to

n(n—l)+n_n(n—1)+ 2n_n(n—1)+2n_n(n—1+2) n(n+1)

2 2 2 2 2 2
Indeed, if we check the first few terms of n(n + 1) / 2, we end up getting the sequence
0,1,3,6, 10, 15, 21, ...
which matches our values for 0, 1, 1 +2, 1 + 2 + 3, etc.

A different way of manipulating our diagram would be to change how we add in the extra boxes. If instead
of creating a square, we create this rectangle:

then we can see that exactly half of the squares in this rectangle are used by our triangle. Since this rectan-
gle has area n(n + 1), this means that the sum of the first n positive natural numbers should probably be n(n
+ 1) / 2, which agrees with our previous answer.

One final way we can think about the geometric intuition is to abandon the idea of completing the rectangle
and to instead return to this earlier drawing, in which we superimposed the real triangle width and height n
on top of our boxy triangle:

As before, one idea might be to treat the total area of the boxes as the sum of two different areas — the area
covered by the triangle, and the area filled by the pieces of the boxes extending above the triangle. If our tri-
angle has width n and height n, then there will be n smaller triangles extending beyond the n by n triangle.
Each of these triangles has width 1 and height 1, and therefore has area Y2. Consequently, the total area
taken up by our boxes would be given by the total area of the large triangle, plus n copies of the smaller tri-
angle. This is
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I’l_2+ ﬁ: 1’12+ n:l’l(l’l+ 1)
2 2 2 2

And again we've reached the same result as before!

The takeaway point from this is that there are always different ways of thinking about problems in mathe-
matics. You might end up at the same result through several different paths, each of which casts light on a
slightly different angle of the problem.

So the big question is how this has anything to do with induction at all. Well, at this point we have a pretty
good idea that the sum of the first »n positive natural numbers is going to be
n(n + 1) / 2. But how would we rigorously establish this? Here, induction can be invaluable. We can prove
that the above sum is correct by showing that it's true when n = 0, and then showing that if the sum is true
for some choice of 7, it must be true for n + 1 as well. By the principle of mathematical induction, we can
then conclude that it must be true for any choice of n.

Here is one possible proof:

Theorem: The sum of the first n positive natural numbers is n(n + 1) / 2.

Proof: By induction. Let P(n) be the statement “the sum of the first n positive natural numbers is
n(n+1)/2.” We prove that P(n) is true for all n € N, from which the result immediately follows.

For our base case, we prove P(0), that the sum of the first O positive natural numbers is
0(0 + 1) /2. The sum of zero numbers is 0, and 0 = 0(0 + 1)/2. Consequently, P(0) holds.

For the inductive step, assume that for some k € N that P(k) is true and the sum of the first k positive
natural numbers is k(k + 1) / 2. We will prove that P(k + 1) is true; that is, the sum of the first k + 1
positive natural numbers is (k + 1)(k + 2) / 2. Consider the sum of the first k + 1 positive natural
numbers. This is the sum of the first k positive natural numbers, plus k + 1. By our inductive hypoth-
esis, the sum of the first n positive natural numbers is k(k + 1) / 2. Thus the sum of the first k + 1
positive natural numbers is

k(k+1) k(k+1) 2(k+1) _k(k+1)+2(k+1) _(k+2)(k+1)

+k+1= + =
2 2 2 2

Thus P(k + 1) is true, completing the induction. H

What a trip this has been! We began by asking how efficient the selection sort algorithm was. In doing so,
we made a detour into geometry to build up an intuition for the answer, and then used induction to formalize
the result.

So back to our original question — how efficient is selection sort? Answer: not very. Selection sorting » ele-
ments requires us to scan a total of n(n + 1) / 2 elements in the course of completing the algorithm. Plug-
ging in n = 1,000,000 gives us that we will make 500,000,500,000 scans. That's 500 billion element
lookups! Even a processor operating in the gigahertz will take a while to finish sorting that way.

The beauty of the result that we have just proven, though, is that from this point forward if we ever see an
algorithm that has this sort of behavior we immediately know how much work it will have to do.
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3.2.1 Summation Notation

In the previous section, we considered the sum
142+...+(m-1)+n

In the course of the proof, we kept referring to this sum as “the sum of the first » positive natural numbers.”
This is a fairly long-winded way of explaining what sum we're computing, and it would be nice if there were
a simpler way to do this.

When working with summations, mathematicians typically use Z notation to describe the sum more com-
pactly. Rather than writing out a sequence with an ellipsis in the middle, we instead describe a general for -
mula for each individual term being summed together, then specify how many terms we want to sum up.

In general, we can describe the sum of a; + a> + ... + a, as follows:

n
Z a;
i=1

Let's piece this apart to see what it says. The large X indicates that we are looking at the sum of some
number of terms. The values below and above the X tell us over what values the summation ranges. Here,
the sum ranges from i = 1 to n, so we will sum up over the terms inside the sum when i=1,i=2, i =3, etc.
up to and including when i = n. Finally, we have the values actually being summed together. Here these are
the values ai. As iranges from 1 to n, we will aggregate and sum up all of these terms.

More formally:

n
z a; is the sum of all ; where ie Nand m < i< n.

i=m

For example, let's consider our original sum 1 + 2 + ... + n. We can write this sum as
n
2.
i=1

This says that we should sum up i as i ranges from 1 up to and including n. For example, if we pick a spe-
cific n (say, n = 5), then we have that

i=1+2+3+4+5

1

5
i=

If you are coming from a programming background, you can think of the summation as a sort of mathemati-
cal “for loop” that ranges over choices of i and sums up the values that are listed.

Summations can have more complex bounds. For example, we could write the sum (-3) + (-2) + (-1) + 0 +
1 as

1

D i=(=3) (=2)+(—=1)+0+1

i=—3

or could sum from O to 4 as
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4
i=0+ 1+ 2+3+4

i=0
In addition to changing the loop bounds, we can also change what's inside the summation actually getting
added up. For example, suppose that we wanted to sum up the first n perfect cubes (that is, 0° + 1° + ... +
(n - 1)%). We could write this as follows:

n—1

> P=0+ '+ 2%+ .+ (n—1)

i=0
There are two important details to note here. First, note that the upper bound on the sum is n — 1, not n,
even though we're summing up the first n perfect cubes. The reason for this is that the lower bound of the
summation is 0, not 1. This means that there are a total of # elements being summed up, not n — 1. Second,
notice that the value being summed this time is not i, but i*. In general, we can perform any arbitrary ma-
nipulations of the index of summation inside the sum. We could, for example, sum up powers of two this
way:

n—1

D 2= 2 2% 2% L 2!

i=0
When working with induction, one special kind of sum arises with surprising frequency. Consider what hap-
pens when we have a sum like this one:

Notice that this sum is the sum from i = 1 to 0. What is the value of this sum? In this case, the sum doesn't
include any numbers. We call sums like this one — where no values are being added up — empty sums. It is
specified here:

A sum of no numbers is called the empty sum and has value 0.

Thus all of the following sums are empty sums and therefore equal to zero:
42 0

0 -2
> 2'=0 D> (i+1)=0 D i=0 D i'=0
i=1 i=137 i=—1 i=5
However, note that the following sum is not empty:
0
2[

i=0
Since the indices of summation are inclusive, this means that this sum includes the term where i = 0. Conse-
quently, this sum is equal to 2° = 1.

Empty sums may seem like little more than a curiosity right now, but they appear frequently in the base
cases of inductive proofs.

Now that we have a formal notation we can use to manipulate sums, let's return back to our previous induc-
tive proof. We proved that 1 + 2 + ... + n =n(n + 1) / 2. What might this look like using summations?
Well, we can rewrite thesum 1 +2 + ... + n as
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i

i=1
Consequently, we can restate the theorem we have just proven as follows:

Z":l,:n(n+1)

2

i=1

Let's repeat our previous proof, this time using summation notation. From this point forward, we will al-
most exclusively use summation notations in formal proofs involving sums.

Theorem: For any n € N, z = @
i=1

Proof: By induction. Let P(n) be the statement that 2", = @ . We prove that P(n) is true for all

n € N by induction on n.
As our base case, we prove P(0), that is, that Z?Zl i= @ . The left-hand side of this equality is
the empty sum, which is 0. The right-hand side of the equality is also 0, so P(0) holds.

For the inductive step, assume that for some natural number &, P(k) holds, meaning that

l-kzl = k(k; U We will prove P(k + 1), meaning that le:ll izw . To see this, note that

k+1 k
+1 +1)+2(k+1 +2)(k+1

Zi: Zz‘ +k+1:—k(k )+k+1:k(k J+2(k ):<k J(k+1)

i=1 i=1 2 2 2

Thus P(k + 1) holds, completing the induction. ll
One of the key steps in this proof was recognizing that

k+1 k
Di=| D irk+1
i=1 i=1

Why does this step work? Well, the left-hand side is the sum of the first k£ + 1 positive natural numbers.
The right-hand side is the sum of the first k positive natural numbers, plus k + 1, the (k + 1)* positive natural
number. All that we've done is “peel oft” the last term of the sum to make it a bit easier to work with. This
technique arises in many inductive proofs, since in order to reason about the sum of the first £ + 1 terms of a
series it may help to consider the sum of the first n terms of the series, plus the (k + 1) term by itself.

3.2.2 Summing Odd Numbers

Now that we have a framework for manipulating sums of numbers, let's do some exploration and see if we
can find some other interesting sums to explore.

What happens if we start adding together the first n odd numbers? If we do this, we'll find the following:

*  The sum of the first 0 odd numbers is 0. It's an empty sum.
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e The sum of the first 1 odd numbers is 1.

e The sum of the first 2 odd numbers is 1 + 3 = 4.

e  The sum of the first 3 odd numbersis 1 + 3 +5=09.

*  The sum of the first 4 odd numbersis 1 + 3 +5+ 7 = 16.

Now that's surprising... the first five terms of this sequence are 0, 1, 4, 9, 16 = 07, 1%, 2%, 3, 4>. Does this
trend continue? If so, could we prove it? One of the beautiful consequences of mathematical induction is
that once you have spotted a trend, you can sit down and attempt to prove that it is not a coincidence and in
fact continues for all natural numbers. Even if we don't have an intuition for why the sums of odd numbers
might work out this way, we can still prove that they must.

Let's see how a proof of this fact might work. First, we have to figure out what we want to show. Our goal
is to show that the sum of the first 7 odd numbers is equal to n>. How would we phrase this as a summation?
Well, we know that the odd numbers are numbers of the form 2k + 1 for integers k, so one way of phrasing
this sum would be

3
|
—_

(2i+1)

I
o

i

Notice that the summation ranges from i = 0 to n — 1, so the sum has n terms in it. It seems like this might
cause a problem when n = 0, since then the sum ranges from O to -1. However, this is nothing to worry
about. When n = 0, we don't want to sum anything up (we're talking about the sum of no numbers), and if
we try evaluating a sum ranging from O to -1 we are evaluating an empty sum, which is defined to be 0.

Given this setup, let's try to prove that the sum of the first 7 odd numbers is r’.

n—1

Theorem: For any natural number n, Z (2 i+1 )= n.
i=0

Proof': By induction. Let P(n) be the statement that Z," :_é (2 i+ 1)2 n* . We prove that P(n) is true
for all n € N by induction on n. As our base case, we prove P(0), that Zi_:lo (2 i+1 ) =0 . The left-

hand side of this equality is the empty sum, which is 0. The right-hand side of the equality is also 0,
so P(0) holds.

For the inductive step, assume that for some natural number k, P(k) holds, meaning that
FL(2i+1)=k> . We will prove P(k + 1), meaning that 2.*_, (2i+1)=(k+1)* . To see this,
note that
k k-1
D (2i+1)=(k+17=D (2i+1)+2k+1=k’+2k+1=(k+1)’
i=0 i=0
Thus P(k + 1) holds, completing the induction. ll

Here, the last step is a consequence of the fact that (k + 1)* expands out to k* + 2k + 1.

So we now have a mathematical proof of the fact that the sum of the first n odd natural numbers is equal to

n®. But why is this? It's here that we see one shortcoming of induction as a technique. The above proof

gives us almost no intuition as to why the result is correct.
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We might then ask — so why is that true? As with our proof about the sum of the first n positive natural
numbers, it might help to draw a picture here. Suppose we start adding up odd numbers, like this:

D + + + + + = |

There isn't an immediate pattern here, but using the same intuition we had for the sum of the first »n natural
numbers we might try completing this second rectangle to form some box:

What are the dimensions of this larger box? Since there are n odd numbers being summed up, the height of
the box is n. The width of the box is one plus the largest odd number being added up. If we look at our
summation, we note that we're adding up terms of the form 2i + 1 and stop when i =n — 1. Plugging ini=
n — 1 to get the largest odd number added up, we get 2(n— 1) + 1 =2n -2+ 1 =2n - 1. Since the width of
the box is one more than this, we end up seeing that the width of the box is 2n. Thus the box has dimen-
sions n by 2n, so its area is 2n”. Since half of that area is used up by the boxes for our sum, the sum should
be equal to n*, as we saw before.

But this is just one intuition for the result. Let's look at our triangle one more time. We already know from
before what the area of this highlighted triangle is:

This is the triangle we drew when we were considering the sum of the first n positive natural numbers. So
what remains in this picture? Well, notice that in the first row there are 0 blue squares, in the second row
there is one blue square, in the third there are two blue squares, etc. In fact, the number of total blue
squaresis 1 + 2 + ... + n— 1. We can see this by rearranging the above digram like this:
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This means that the sum of the first n odd numbers is the sum of the first n positive natural numbers, plus
the sum of the first n — 1 positive natural numbers. We happen to have formulas for these sums. If we add
them together, we get the following:

n(n+1)_|_(n—l)n_n(n+1)+n(n—1)_n(n+1+n—l)_11(271)_2£2_n2
2 2 2 B 2 2 T2

Et voila! We have our result.

But it turns out that with the above picture there's a much easier way of arriving at the result. What happens
if we rotate the blue triangle 180 degrees? If we do this, we'll end up getting this picture:

The total area of this square is equal to the sum of the first n odd numbers. Since the square has size n x n,
the sum of the first 7 odd numbers should be 77 as it indeed is.

Of course, none of these intuitions match the intuition that we actually used in our proof. Let's revisit the
proof for a short while to see if we can come up with a different explanation for why the result is true.

We can get a bit of an intuition from looking at the last step of the proof. If you'll notice, the proof works
because given n?, adding in 2n + 1 (the (n + 1)st odd number) takes us up to (n + 1)*. In other words, we
have that

n+1D?=-rm’=n*+2n+1-n"=2n+1

So one reason to think that this result would be true is that the spacing between consecutive powers of two is
always an odd number. If we keep adding up odd numbers together over and over again, we thus keep ad-
vancing from one term in the sequence to the next.

But why exactly is that? It turns out that, again, there is a beautiful geometric intuition. Suppose that we
have the sum of the first n odd numbers, which we know is equal to n>. We can draw this as follows:
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Now, suppose that we add in the (n + 1)st odd number, which is 2n + 1. One way to visualize what happens
when we do this is to break the 2n + 1 apart into three pieces — one piece of size n, one piece of size n, and
one piece of size 1. Doing so gives us the following:

As you can see, these three pieces can be added to the square in a way that extends it into a square of the
next size. This in a sense justifies our induction. The reason that the sum of the first » odd numbers is equal
to n’ is because each odd number contributes enough to the previous perfect square to get us up to the next
perfect square.

This intuition is actually extremely powerful, and we can use it as a stepping stone toward a larger result.
The key idea is to think about what we just did backwards. Here, we started off with the sum of the first n
odd numbers and ended up with the perfect squares. But in reality, our proof works the other way. We
showed that you can progress from one perfect square to the next by adding in the (n + 1)" odd number.
This was almost a pure coincidence — it wasn't the fact that it was the (n + 1)" odd number so much as it was
the value 2n + 1, which is the difference between two adjacent terms in the sequence. The fact that we call
numbers of the form 2n + 1 the odd numbers was entirely accidental.

3.2.3 Manipulating Summations

Any good mathematical proof can be lifted into a more general setting, as you will see repeatedly through-
out your exploration of the mathematical foundations of computing. The proof we just completed about
sums of odd numbers can indeed be generalized to a more elaborate and more powerful result that we can
use to derive all sorts of results without having to directly resort to induction.

Before jumping off, let's review something that we already happened to know. We currently know a formula
for the sum of the first n positive integers; specifically, we have that

ii:n(;ﬁl)

= 2

Let's update this so that we have this formula phrased in terms of the sum of the first n natural numbers,
rather than positive integers. If we consider this value, we get the sum

n—1

i

i=0

What is the value of this sum? Well, one thing we can note is the following:

n—1 n—1

zz’:;H n—nzzn:i—n

i i i=0

Now, we can exploit the fact that this first sum is equal to O + 1 + 2 + ... + n. This has exactly the same
value as 1 + 2 + ... + n, because the zero doesn't contribute anything. In other words, we can just restart
this summation at O rather than at 1 without changing the value of the expression. This gives us
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. . - n(n+1) n(n+1)=-2n_n(n+1-2) n(n—1)
i=) i—n=) i—n= n= - _
2 imn= 2 =

n—1 ' l’l(l’l_l)
i=0 2

This formula is extremely important — you should definitely commit it to memory!

What we have just done right here was derive a new result about a summation based off an old result about
summations. Most of the time that you need to evaluate summations, you can use standard techniques like
these to get a nice value for the summation without having to draw pictures or use induction. This section
focuses on some standard identities you can use to simplify summations, along with the proofs of why they
work. In a sense, the proofs that we will do here will serve as lemmas that we can use later on when simpli -
fying sums we have never seen before. Although most of the proofs here may seem obvious, it's good to jus-
tify that they always work correctly. Right now, we have a nice closed-form solution for the sum of the first
n natural numbers. More explicitly, we have this:

'iil:n(n—l)
=0 2

I've explicitly highlighted the fact that we're computing 0' + 1' + 2" + ... + (n — 1)'. What if we were to
change the exponent? What effect would this have on the sum? One simple change would be to set the expo-
nent to 0, meaning we'd compute

0+1°+2°+ ... n=1)"=1+1+...+1.

This should come out to n, since we're adding 1 up n times. This is indeed the case, as seen in this proof:

n

Theorem: For any natural number n, 2 :_& l=n.

n

Proof': By induction. Let P(n) be the assertion that 2 :_S 1 =n . We prove that P(n) is true for all n €
N by induction on n.

As our base case, we prove P(0), that is, that Z; :10 1=0 . The left-hand side of this equality is the
empty sum, which is 0. The right-hand side of the equality is also 0, so P(0) holds.

For the inductive step, assume that for some natural number &, P(k) holds, meaning that Zf ;01 1=k .
We will prove P(k + 1), meaning that 2+_, 1=k+1 . To see this, note that

k k—1
1= 1+1=k+1
i=0 i=0

Thus P(k + 1) holds, completing the induction. ll

This proof might seem silly, but it's good to be able to confirm results that we intuitively know to be true.
This gives us a nice starting point for future work.

*  This assumes that 0° = 1. In most of discrete mathematics, this is a perfectly reasonable assumption to make, and we will use this convention
throughout this course.
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So we now know how to sum up n° and n' from zero forward. What other sums might we be interested in
simplifying? One thing we might do at this point would be to revisit our earlier proof about sums of odd
numbers. We proved explicitly by induction that
I

(2i+1)=n

n

Il
o

i

Could we somehow prove this result without using induction? Here is one possible approach that we might
be able to use. Right now we know how to sum up n° (1) and n' (n). Could we perhaps decompose this sum
into these two pieces?

We already know a value for the second term, since we explicitly proved that this sum is equal to n. This
means that we have

1
D> (2i+1) Z2z+n

n—
i=0

It seems like we also should be able to simplify the first sum like this:

1
Z 2i+ 1) 2Zz+n

n— n—1
i=0

From there, we can use our formula for the second sum to get
n—1
n—1
Z 2i+1)= ¥+n:n(n—1)+n=n2—n+ n=n’
i=0

And we have an entirely new proof of the fact that the sum of the first n odd numbers is equal to n*>. But un-
fortunately, this proof makes two intuitive leaps that we haven't yet justified. First, why can we split the ini-
tial sum up into two separate sums? Second, why can we factor a constant out of the sum? Both of these
steps are reasonable because of properties of addition, but are we sure they work for the general case? The
answer turns out to be “yes,” so the above proof is valid, but let's take a minute to prove each of these.

Our first proof will be something to justify why we can split a summation of the sum of two terms into two
separate summations. Rather than just prove it for the case above, we'll prove a more general result that will
let us split apart arbitrary summations containing the sum of two terms.
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n—1 n—1 n—1

Theorem: For any natural number 7, Z a+b,) Z a+ Z b,.

i=0

Proof: By induction. Let P(n) be the assertion that >, (a+b)=2""ta+X-!b, . We prove
that P(n) is true for all n € N by induction on n.

As our base case, we prove P(0), which claims 2. 2 (a,-"‘ b,-)z 2iloa; 210 b, . All three of these
sums are the empty sum. Since 0 =0 + 0, P(0) holds.

For the inductive step, assume that for some k£ € N, P(k) holds, so

Z (a,+b)) Zla+2b

We will prove P(k + 1), meaning that
k

;(aﬁb §a+2b

To see this, note that
k

k=1 k-1 k-1 k k
Z (ai+bi)zz (ai"'bi)"'ak"'bkzz aﬁz bi+ak+bk:Z aﬁz b,
=0 =0 i=0 =0 =0

i=0
Thus P(k + 1) holds, completing the induction. ll

Great! We've established that we can split apart a summation of sums into two independent summations. If
we can prove that we can always factor a constant term out of a summation, then we will be able to rigor-
ously justify every step of our alternate proof about the sum of the first n odd numbers. More formally, we
want to prove the following:

n—1 n—1

Theorem: For any natural number n and any r € R, Z r-a=r- Z a .
i=0 i=0

This theorem is different from the other theorems we have proved by induction so far. Previously, our theo-
rems have had the form “for any natural number n, P(n) is true.” In this case, we have two separate vari-
ables that we have to consider — the natural number n, and the real number ». How might we go about prov-
ing this?

Remember that we write a proof by induction by choosing some property P(n), then proving that P(n) is true
for all n € N. What if we chose our property P(n) such that if P(xn) holds true for all # € N, the overall
theorem is true as well? Specifically, since we want our result to work for all » € N and for all » € R, what
if we chose our property P(n) as follows:

n—1

Let P(n) be the assertion that for all r € R, z ra=r- Z a;
i=0 i=0
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Now, if P(n) is true for all natural numbers 7, then we must have that for any real number r, we can factor r

out of a summation.

Given this, let's see what a proof of the theorem might look like:

P(n) is true for all n € N by induction on n.

As our base case, we prove P(0), that is, that for any r € R,
=il il

2 ra=rq
i=0 i=0

k=1 1
2 ra=r.a,
i=0 i=0

We will prove P(k + 1), meaning that for any € R, we have
k k

2 ra=r
i=0 i=0

To see this, consider any » € R. Then

Thus P(k + 1) holds, completing the induction. ll

Proof: By induction. Let P(n) the assertion that for any r € R, Z," -0

r-a;=r-2"_) a, . We prove that

Both of these sums are the empty sum, and we have that 0 = r - 0 for all » € R. Thus P(0) holds.

For the inductive step, assume that for some k € N, P(k) holds, so for any r € R:
k

k k=1 k-1 k=1 k
2ora= raFra=r) arra=r(2 a*a)=r), a,
i=0 i=0 i=0 i=0 i=0

We now have four results we can use when trying to prove results about sums:

3
|

1. 1=n

Il
o

n—1 _
2. Zi:L”2 1)

i=0

3. Y (a+b,) Za+2b

i=0

S

n—1

4. Zra—rZa

These four results make it possible to quickly evaluate many useful sums without having to resort to induc-
tion. For example, suppose that we want to evaluate the following sum, which represents the sum of the first

n even natural numbers:

We can just compute this directly:
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n—1 n—1 n(n_l) 5
Z 2i=2z i=2———=n(n—1)=n’-n

i=0 i=0 2

This saves us the effort of having to even evaluate a few terms of the series to see if we can spot any trends!
We immediately know the answer. To verify that it's correct, let's plug in a few terms to see if it matches
our expectation:

*  The sum of the first 0 even numbers is 0, and 0> — 0 = 0.

e The sum of the first 1 even number is 0, and 1> -1 = 1.

e The sum of the first 2 even numbers is 0 + 2 =2, and 2> — 2 = 2.

The sum of the first 3 even numbers is 0 + 2 + 4 = 6, and 3° -3 = 6.

¢ The sum of the first 4 even numbers is 0 + 2 + 4 + 6 = 12, and 4* — 4 = 12.

It's amazing how much simpler it is to analyze summations this way!

3.2.4 Telescoping Series

We now have some general techniques that we can use to manipulate summations. We are about to see a
simple but powerful technique that makes it possible to evaluate more complex summations than before —
telescoping series. Earlier in this chapter, we saw that the sum of the first # odd numbers was n>. We saw
several ways to prove this, but the particular inductive approach we used was based on the fact that the dif-
ference of two consecutive perfect squares is an odd number. In fact, the odd numbers can be thought of as
the differences between consecutive perfect squares. The key insight we needed was that (n + 1)* — n*> = 2n
+ 1. Given this, let's revisit our formula for the sum of the first n perfect squares. The initial summation is

n—1

> (2i+1)

i=0

Now, from above, we have that 2i + 1 = (i + 1)* = i>. As a result, we can replace the term 2i + 1 in the sum-
mation with the expression (i + 1)* —i*>. What happens if we do this? In that case, we get this:

n—1

0 ((i+1)=i?)

If we expand this sum out, something amazing starts to happen. Here's the sum when n =0, 1, 2, 3, and 4:

i=

-1

M

((i+1)=i*)=0

0

((i+ 1)=i*)=(1"=0%)=1

M- 1D

I}
=}

((l'+ 1)2—i2)=(22—12)+ (12_02):22_02:4

((i+17=i%)=(3>=2")+ (2°=1")+ (1= 0*)=3"-0’=9

M- 1M

Il
(=]

((i+ 17 =i%)=(4"=3")+ (3>=2%)+ (2°=17)+ (1= 07)=4"-0"=16
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Notice what starts to happen as we expand out these summations. Each term in the sum is a difference of
two terms, where the second term of difference is the first term of the next difference. As a result, all of the
inner terms completely disappear, and we're left with the difference of the first term and the last term.

One quick formalism:

n—1

The sum Z (x g = xi) is called a felescoping series.
i=0

If we evaluate this sum, then the adjacent pairs will continuously collapse and eventually all that will remain
are the first and last elements. We can formally prove this here:

n—1

Theorem: For all natural numbers n, Z (xl.+ = x,.) =X,— X,
i=0

Proof: By induction. Let P(n) be the assertion that 2.;" :_é (x i+l X i>: X,— X, . We prove that P(n)
is true for all n € N by induction on .

As our base case, we prove P(0), that Z,»_ :10 (xm - x,.): X, X, . In this case, the left-hand side is
the empty sum and the right-hand side is zero, so P(0) holds.

For the inductive step, assume that for some k € N, P(k) holds, so X' (x,,,— x,)=x,—x, . We

will prove P(k + 1), that Zfzo(x,-ﬂ— X,-)Z X, +1— X . To see this, notice that

k k=1
Z (xi+1_xi>zz (xi+1_'xi>+xk+1_'xk:<xk+1_xk)+(xk_x0>:'xk+1 —Xp
i=0 i=0

Thus P(k + 1) holds, completing the induction. ll

This result might not initially seem very important, but combined with our previous results we can now solve
various summations that we previously would not be able to. For example, we happen to know the value of
the following sums:

n—1 n—1 ‘ l’l(l’l_l)

i=0
If we start expanding out some terms, we get the following sequence:
0,1,5,14, 30,55, ...

It's hard to spot a pattern here. If we turn to geometry, we'll find that it's surprisingly tricky to get a good
solid geometric intuition for this sum. What other tricks can we try?



9717371

Previously, we considered the difference of (n + 1)* and n” to learn something about sums of odd numbers.
Now, let's suppose that we didn't already know the fact that the sum of the first n natural numbers is n(n — 1)
/2. We could have figured this out as follows. Using properties of telescoping sums, we know that

Z i+1)=i*)=n’

If we simplify the inside of this sum, we get that

1 n—1 n—1

(i+17=2)=D (P+2i+1—i%)=) (2i+1)=

i=0 i

n

Il
o
1l
o

i
Now, using properties of summations, we can simplify this as follows:

n—1 n—1 n—1

(2i+1)=2D i+ ) 1
0 i=0 =0
We can replace this final sum with n, which we already know, to get
n—1
n’=2 Z i+n
i=0

If we subtract n from both sides and divide by two, we get

i=

Since we know that n* — n = n(n — 1), we have just derived the formula for the sum of the first n natural
numbers in a completely different way.

The reason that this derivation is important is that we can use an almost identical trick to determine the sum
of the first n perfect squares. The idea is as follows. When working with the difference (n + 1)* — n’, we
were able to derive the formula for the sum of the natural numbers raised to the first power. What happens
if we try considering the difference (n + 1)’ — n’? Well, using what we know about telescoping series, we
can start off like this:

1

i+ 1) =i")=n’

3
|

Il
=}

i

2

Since (i + 1) ==+ 3 + 3i+ 1 —# = 3i* + 3i + 1, this means that

1

(3°+3i+1)=n

I
|

I}
=}

i

Using the properties that we just developed, we can split our sum into three sums:

n—1 n—1

3Zz+321+21 n

We already know values for these last two sums, so let's go simplify them:
n—1
3 -1
33 e % n=r
i=0

If we now try to isolate the mystery sum, we get the following:
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'ilz_nS_n(n—l)_£_2_n3_3n(n—l)_2_n_ 2n3—3n( —1)-2n
= 3 2 3 6 6 6 6
_n(2n2—3(n—l)—2)_n(2n2—3n+ 3—2)_n(2n2—3n+ 1)
a 6 B 6 a 6
_n(n—1)(2n—1)
B 6

And so we can conclude (correctly) that

3
|
—_

izzn(n— 1)(2n— 1)
6

Il
(=)

The beauty of building up all of this machinery is that we don't need to do any induction at all to prove that
this result is correct. We have arrived at this result purely by applying theorems that we have developed ear-
lier. The key insight — treating odd numbers as the difference of adjacent perfect squares — is a very power-

ful one, and using techniques similar to what we've developed above it's possible to find formulas for the
sum of the first n kth powers of natural numbers for any arbitrary natural number £.

So far, we have restricted ourself to using telescoping sums to reason about summations of terms of the form
X" for some n. That is, we have sums of x°, x', and x>. But we can come up with summations for other se-
quences as well. For example, consider the series of powers of two: 2°,2',2%,2°, ... =1,2,4,8,.... We
might consider what happens when we start summing these numbers together. For example, we have the
following:

((i+1)7=i*)=0

D 2'=1+2=3
ey
D 2=1+2+4=7
i=0
Can we spot a pattern here? Well, the sequence 0, 1, 3, 7, ... is one less than the sequence 1, 2, 4, 8, ...;
that is, the actual sequence of powers of two. That's interesting... does the trend continue?

It turns out that the answer is yes. We could prove this by using a brand-new induction, but there's a much
simpler and more direct way to accomplish this. Using our idea of manipulating telescoping series, we have
the following:

1

(2i+ 1_2i):2n_20:2n_1

n

Il
(=)
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So what is 2""' — 2'? Well, doing some simple algebra tells us that
2+l _ni_n (21‘)_21’:21‘
Using this, we can simplify the above summation to get
ni (2™ l—2"):’12l 2'=2"-1
i=0 i=0
So the sum of the first n powers of 2 is 2" — 1. Amazing!

But why stop here? What happens if we sum up 3° + 3" + 3% + ... + 3™'? Do we get 3" — 1, as we did with
powers of two? Well, let's start summing up some terms in the series to see what we get:

D 3'=1+3=4
i=0

2
D 3'=1+3+9=13

Il
=}

3 =143+9+27=40

-

(=1

This sequence (0, 1, 4, 13, 40, ...) doesn't seem connected to the sequence of powers of three (1, 3, 9, 27,
81, ...) in an immediately obvious way. If we were to just use induction here, we would fail before we
started because we don't even have an idea of what we'd be trying to prove.

However, using our technique of telescoping sums, we can make the following observations. What happens
if we consider the sum of differences of powers of three? That worked well for the case when we had pow-
ers of two, so perhaps it will work here as well. If we try this, we get the following starting point:

|
—_

n

<3i+ 1_31’):3n_1

1]
o

So what is 3""' — 3'? In this case, it's not equal to 3'. However, a little arithmetic tells us that
3% -3'=3(3")-3'=(3-1)3'=2-3'

So we can return to our original sum and simplify it as follows:
n—1
(3*'-37)=2 (2:3")=3"-1
i=0

Finalizing the math with some arithmetic:

1

n

Il
=}

i

n—1

D (2:3)=3"-1

i=0

n—1

2).3'=3"-1
i=0
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n—1 n
i 3 =1
3=
i=0 2

It turns out that this works out just beautifully. If we start with the sequence of powers of three:
1,3,9,27,81, 243, ...

then subtract one, we get
0,2, 8,26, 80,242, ...

Dividing by two gives
0,1,4,13,40, 121, ...

which indeed agrees with the sequence we had before.

To end on a high note, let's see if we can generalize this even further. Suppose we have the sum &° + k' + &
+ ... + k™' for some real number k. What is this sum equal to? Using the same trick we used for the case
where k = 3, we start off by writing out the telescoping series:

n—1

Z (ki+l_ki):kn_1
i=0
We can simplify the term inside the summation by rewriting it as
1

(k'(k—1))=k"—1

n

Il
(=

i

Now, let's assume that £ is not equal to one, meaning that k — 1 # 0. As a good self-check, think about what
happens if we let k = 1; why is it reasonable to assume that k # 1 here? Given this assumption, we can then
do the following:

n—1
(k—1)D. k'=k"—1
i=0

And we now have a way of simplifying sums of powers!

The techniques we have developed in this section extend to a much more elaborate system called the finite
calculus, in which the notion of differences of adjacent terms take on a role analogous to integrals and deriv-
atives in standard calculus. There are many good books and tutorials on the subject, and you're strongly en-
couraged to explore the finite calculus if you have the time to do so!

3.2.5 Products

As a closing remark for our discussion on summations, we should note that just as there is Z notation for
summations, there is a corresponding IT notation for products. The definition is analogous:

H a, is the product of all a; where i € Nand m <i<n.

i=m
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For example:
5
[Ti=1-23-4-5=120

i=1
Just as the empty sum is defined to be 0, the empty product is defined to be one.

A product of no numbers is called the empty product and is equal to 1.
There are many functions that are defined in terms of products. One special function worth noting is the
factorial function, which is defined as follows:

For any n € N, n factorial, denoted n!, is defined as n! = H [
i=1

For example, 0! = 1 (the empty product), 1! =1, 2! =2, 3! =6, 4! =24, etc. We'll return to factorials in a
later chapter as we explore combinatorics.

3.3 Induction and Recursion

There is a close connection between mathematical induction and recursion. In mathematical induction, we
prove that something is true by proving that it holds for some simple case, then proving that each case im-
plies the next case. In recursion, we solve a problem by identifying how to solve some simple case of that
problem, and solve larger instances of the problem by breaking those instances down into smaller instances.
This similarity makes it possible to use induction to reason about recursive programs and to prove their cor-
rectness.

As an example, consider the following recursive C function, which computes n!:

int factorial(int n) {
if (n == 0) return 1;
return n * factorial(n - 1);

}

How can we be sure that this actually computes n factorial? Looking over this code, in a sense it's “obvious”
that this should work correctly. But how would we actually prove this?

This is where induction comes in. To prove that this function works correctly, we will show that for any nat-
ural number 7, that the factorial function, as applied to 7, indeed produces n!.” This in a sense plays out the
recursion backwards. The recursive function works by calling itself over and over again with smaller inputs
until it reaches the base case. Our proof will work by growing our knowledge of what this function does
from the bottom-up until we have arrived at a proof that the factorial function works for our given choice of
n.

*  Okay... technically speaking, this isn't 100% true because ints can't hold arbitrarily large values. We'll gloss over this detail here, though when
formally verifying arbitrary programs you should be very careful to watch out for this case!
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Theorem: For any n € N, factorial (n) =n!.

Proof: By induction on n. Let P(n) be “factorial (n) =n!.” We will prove that P(n) is true for all
n e N.

As our base case, we prove P(0), that factorial (0) =0!. By inspection, we have that facto-
rial(0) = 1, and since 0! = 1.

For our inductive step, assume for some k € N that P(k) holds and factorial (k) = k!. We prove
P(k + 1), that factorial(k + 1) =(k+ 1)!. To see this, note that since k + 1 # 0, factorial (k
+ 1) will return (k + 1) X factorial((k+ 1)—1)=(k+ 1) X factorial (k). By our inductive
hypothesis, factorial (k) = k!, so factorial(k + 1) =(k+ 1) xk!=(k+1)!. Thus P(k+ 1)
holds, completing the induction. l

This proof is mostly a proof-of-concept (no pun intended) that we can use induction to prove properties of
recursive functions. Now that we know we can use induction this way, let's use it to explore some slightly
more involved recursive functions.

The next example we will work with will involve recursive functions applied over lists of elements. Many
programming languages, such as LISP and Haskell, use recursion and lists as their primary means of compu-
tation, while other languages like JavaScript and Python support this style of programming quite naturally.
In the interests of clarity, rather than writing programs out using any concrete programming language, we'll
use a pseudocode language that should be relatively easy to read. The main pieces of notation we will need
are the following:

e If Lis alist of elements, then L[n] refers to the nth element of that list, zero-indexed. For example,
if L=(E, B, A,D, C), then L[0] =E, L[1] =B, etc.

e If L is a list of elements, then L[m:] refers to the sublist of L starting at position m. For example,
with L defined as above, L[1:] = (B, A, D, C) and L[2:] = (A, D, C)

e If Lis alist of elements, then |L| refers to the number of elements in L.

Now, let's suppose that we have a list of real numbers and want to compute their sum. Thinking recursively,
we might break this problem down as follows:

*  The sum of a list with no numbers in it is the empty sum, which is 0.

* The sum of a list of (n + 1) numbers is the sum of the first number, plus the sum of the remaining n
numbers.

Written out in our pseudocode language, we might write this function as follows:

function sum(list L) {
if |L] = 0O:
return 0.
else:
return L[O] + sum(L[1:]).
}

To see how this works, let's trace the execution of the function on the list (4, 2, 1):
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sum(4, 2, 1)
4 + sum(2, 1)

The reason that the above recursive function works is that every time we call the sum function, the size of
the list shrinks by one element. We can't shrink the list forever, so eventually we hit the base case.

So how might we prove that this function works correctly? With our previous recursive function, it made
sense to prove the function was correct using recursion, because the argument to the function was itself a
natural number. Now, the argument to our function is a list of values. Fortunately, though, this does not
end up causing any problems. Although the actual list itself is not a natural number, the length of that list is
a natural number. We can therefore prove the correctness of our algorithm by showing that it works cor-
rectly for lists of any length. This trick — using induction on the size or shape of some object — enables us to
use recursion to prove results that don't directly apply to the natural numbers.

|Ll-1
Theorem: For any list L, sum(L) = Z L[i]

i=0

Proof': By induction. Let P(n) be the following assertion:

|LI—1
For any list L of length n, sum(L) = Z':o L[i].

We prove that P(n) is true for all n € N by induction. As our base case, we prove P(0), that for any
list L of length 0, that sum(L) = Z','Lz‘al L[i]. By definition, sum(L) = 0 for any empty list, and

zILI G L[i]=%2, L[i]=0. Thus sum(L) = zIL\ o' L[] as required.

For the inductive step, assume that P(k) holds for some n € N and that for all lists L of length &, that
sum(L) = Z‘iL:l_Ol L[i]. We prove P(k + 1), that for all lists L of length k + 1, that sum(L) =

ZliLzl_ol L[i]. Consider any arbitrary list L of length k£ + 1. By definition, sum(L) in this case is L[0]
+ sum(L[1:]). For notational simplicity, let's let L'= L[1:]. The list L" has length k, since it consists
of all elements of L except for the element at position 0. Thus by our inductive hypothesis, we have
that sum(L') = ZliL:"O_l L' [ i ] . Now, we know that L' consists of all of the elements of L except for
the first, so L'[i] = L[i + 1] for all indices i. Therefore, we have sum(L’) = Z'.L:"(;l L[i+1]. We can
then adjust the indices of summation to rewrite Z'iLJO_l Lli+1]= ZlL LV L[i]. Since ILT=ILI- 1, we
can further simplify this to Z‘L I L[i ]=Z'f:‘11 L[i], so sum(L) = Zﬂll L[i] . This means that

|Ll-1 l£|-1
sum(L) = L[0] + ) L[i] = 2 L[]
i=1 i=
Since our choice of L was arbitrary, this proves that for any list L of length k + 1, we have that
sum(L) = Z‘Ll L[], completing the induction. H

This proof is at times a bit tricky. The main complexity comes from showing that the sum of the elements
of L[1:] is the same as the sum of the last n elements of L, which we handle by changing our notation in a
few places.
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We now have a way of proving the correctness of functions that operate over lists! What other functions can
we analyze this way? Well, we were able to write one function that operates over sums; could we write one
that operates over products? Of course we can! Here's what this function looks like:

function product(list L) {

if L] =
return 1.
else:

return L[0] x product(L[1:]).
}
As with before, we can trace out the execution of this function on a small list; say, one containing the values
(2,3,5,7):

product(Z 3, 5, 7)
product(3 5, 7)

x

= 2 x (3 x product(S 7))

=2 x (3 x (5 x product(7)))

=2 x (3 x (5 x (7 x product())))
=2x (3 x(5x(7x1)))

=2x (3 x(5xT7))

=2 x (3 x 35)

=2 x 105

= 210

Proving this function correct is similar to proving our sum function correct, since both of these functions
have pretty much the same recursive structure. In the interest of highlighting this similarity, here is the
proof that this function does what it's supposed to:
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ILl—1

Theorem: For any list L, product(L) = H L[i]
i=0

Proof: By induction. Let P(n) be defined as follows: ‘
-1

P(n) = “For any list L of length n, product(L)= []_ " L[i].
We prove that P(n) is true for all n € N by induction. As our base case, we prove P(0), that for any

list L of length 0, that product(L) = HlLl 'L[i]. By definition, product(L) = 1 for any empty
list, and HILl lL[ = H,:OL[ |=1. Thus product(L) = HlLl 1L[ | as required.

For the inductive step, assume that P(k) holds for some n € N and that for all lists L of length &, that
product(L) = Hlﬂgl L [i ] . We prove P(k + 1), that for all lists L of length k + 1, that product(L)

Hm "L[i]. Consider any arbitrary list L of length k£ + 1. By definition, product(L) in this case
is L[0] x product(L[1:]). For notational simplicity, let's let L' = L[1:]. The list L' has length &,
since it consists of all elements of L except for the element at position 0. Thus by our inductive hy-
pothesis, we have that product(L') = H‘L UL [ ] Now, we know that L' consists of all of the el-
ements of L except for the first, so L'[i]] = L[i + 1] for all indices i. Therefore, we have prod-
uct(L)= H‘L -1 L[ i+ 1] We can then adjust the indices of the product to rewrite

[T L[i+1]=T1%" L[i] . Since IL1=ILI - 1, we can further simplify this to
H‘lel L[i ]ZH‘,ALz‘ll L[ ] , S0 product(L’) = H'iL:'? L[i] . This means that
lLl-1 |Ll-1
product(L) = L[0] x H L[i] = H L[i]
i=1 i=0
Since our choice of L was arbitrary, this proves that for any list L of length k + 1, we have that
product(L) = HEL:‘_Ol L[i], completing the induction. l

The fact that these proofs look very similar is not a coincidence; we'll soon investigate exactly why this is.

Let's do one more example. Suppose that we have a list of real numbers and want to return the maximum
value contained in the list. For example, max(1, 2, 3) = 3 and max(s, €) = . For consistency, we'll define
that the maximum value of an empty list is -co. We can write a function that computes the maximum value
of a list as follows:
function listMax(list L) {
if [L| = o:
return -o,
else:
return max(L[0], listMax(L[1:])).
}

This looks surprisingly similar to the two functions we've just written. If we trace out its execution, it ends
up behaving almost identically to what we had before:
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listMax(2, 3, 1, 4)

max(2, listMax(3, 1, 4))

max(2, max(3, listMax(1, 4)))

max(2, max(3, max(1, listMax(4))))

max(2, max(3, max(1, max(4, listMax()))))
max(2, max(3, max(1, max(4, -«))))

max(2, max(3, max(1, 4)))

max(2, max(3, 4))

max(2, 4)

4

Proving that this function correct is quite easy, given that we've essentially written this same proof twice in

the previous section!

Theorem: For any list L, 1istMax(L) = max{L[O], L[1], ..., L[ ILI - 1]}

Proof: By induction. Let P(n) be defined as follows:

P(n) = “For any list L of length n, 1istMax(L) = max{L[0], ..., L[ ILI - 1]}.
We prove P(n) is true for all n € N. As our base case, we prove P(0), that for any list L of length 0,
that 1istMax(L) = max{L[0], ..., L[ ILI - 1]}. By definition, 1istMax(L) = -co for any empty list,
and max{L[O], ..., L[ LI - 1] } =max{} =-c0. Thus 1listMax(L) = max{L[O0], ..., L[ ILI - 1]} as re-
quired.
For the inductive step, assume that P(k) holds for some k£ € N and that for all lists L of length k, that
listMax(L) =max{L[0], ..., L[ ILI - 1]}. We prove P(n + 1), that for any list L of length k+ 1, that
listMax(L) =max{L[0], ..., L[ ILI - 1]}. Consider any arbitrary list L of length k + 1. list-
Max(L) in this case is max(L[0], 1istMax(L[1:]). For notational simplicity, let's let L' = L[1:]. The
list L' has length &, since it consists of all elements of L except for the element at position 0. Thus by
our inductive hypothesis, we have that 1istMax(L') = max{L[0], ..., LT IL1- 1] }. Now, we know
that L' consists of all of the elements of L except for the first, so L'[i] = L[i + 1] for all indices i.
Therefore, we have 1istMax(L') = max{L[1], ..., L[ ILI - 1] }. This means

listMax(L) = max(L[0], max{L[1], ..., L[ ILI- 1] })
=max{L[0], ..., L[ILI - 1]}

Since our choice of L was arbitrary, this proves that for any list L of length k + 1, we have that
listMax(L) = max{L[O], ..., L[ILIl - 1]}, completing the induction. H

3.3.1 Monoids and Folds %

We've just written three different functions, each of which computes a different property of a list, but which
each have almost the exact same structure and same proof of correctness. At this point you should start to
be curious if there is something more general at play here.

It turns out that the reason that these three functions look so similar is that they are all special cases of a
more general function. To motivate what this function is, we will need to take a closer look at exactly what
these functions are doing. Let's look at the base cases of these recursive functions. In the case of sum, the
base case is 0. In the case of product, the base case is 1. For 1istMax, the base case is -co. These val-
ues are not chosen arbitrarily; they each have very special properties. Notice for any a, we have
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O+a=a+0=a
Ixa=ax1l=a
max(-00, @) = max(a, -o0) =a

In other words, the number O is the identity element for addition, the number 1 is the identity element for
multiplication, and the value -oco is the identity element for max. More formally, given some binary opera-
tion %, an identity element for % is some value e such that for any a, we have that a % e = e % a = a. Not
all binary operations necessarily have an identity element, though many do.

There is one other important property of addition, multiplication, and max that makes the above proof work
— namely, all three operations are associative. That is, for any a, b, and ¢, we have that

a+(b+c)=(@+b)+c
ax(bxc)=(axb)xc
max(a, max(b, ¢)) = max(max(a, b), ¢)

More formally, a binary operation % is associative if for any a, b, and ¢, (a ¥ b) k c=a % (b * ¢). Asa
result, when writing out an associative operation as applied to a list of values, it doesn't matter how we
parenthesize it; (a % b) % (¢ % (d % e)) = a * (b % (c * (d % ¢))). In fact, we can leave out the parenthe-
ses and just write a % b % ¢ % d % e, since any parenthesization of this expression yields the same value.

Binary operations that are associative and which have an identity element are extremely important in com-
puter science. Specifically, we call them monoids:

A monoid is a binary operation % that is associative and that has an identity element.

Addition, multiplication, and maximum are all examples of monoids, though many operations are not
monoids. For example, subtraction is not a monoid because it is not associative; specifically, 1 — (2 — 3) = 2,
while (1 -2) -3 =-4.

Let's introduce one new piece of notation. When dealing with sums of multiple values, we introduced X
notation to condense the sums into more workable forms. Similarly, when dealing with products, we in-
troduced IT notation. Let's generalize this notation a bit more. Suppose that we have a sequence Xx,, X;,
..., Xn—1 Of values and want to compute X, % x; % ... % x,1. We can write this out as

n—1
* X,
i=0

We can formally define what this means inductively:

e ! _x,=eif n<m. Here, e is the identity element of the monoid. In other words, if we apply

the operation zero times, then we just end up with the identity element. We define the empty sum
as 0 and the empty product as 1, and this definition is just an extension of what we have before.

« Ifms<n,then %" x,=x,% (%™ . x,). Thatis, if we have a whole bunch of terms that we

need to apply the operator to, we can just “peel off” the first term, apply the operation to the rest
of the terms, and then combine that result with the first value.

Given this new terminology, let's review the three functions that we wrote previously:
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function sum(list L) {

if |L] = 0O:
return 0.
else:
return L[0] + sum(L[1:]).
}
function product(list L) {
if |L] = 0O:
return 1.
else:
return L[0] x product(L[1:]).
}
function listMax(list L) {
if |L] = 0O:
return -,
else:
return max(L[0], listMax(L[1:])).
}

We can write this more generically in terms of monoids as follows:
function fold(list L) {

if |L] = 0O:
return e.
else:

return L[0] » fold(L[1:]).

Here, as before, e is the identity element of the monoid. This function is sometimes called a fold, reduce,
or accumulate function and is a staple in most functional programming languages. Assuming that % is a
monoid and that e is its identity element, we can formally prove that this function is correct by generaliz-
ing our previous proofs:
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|Ll—1

Theorem: For any monoid % and list L, fo1d(L) = * L[i]

i=0

Proof: By induction. Let % be any monoid with identity element e and let P(r) be this assertion:
For any list L of length n, fol1d(L) = * Ii; L[i].

We prove that P(n) is true for all n € N by induction. As our base case, we prove P(0), that for any

list L of length 0, that fo1d(L) = *liLz‘Bl L[i]. Note that fold(L) = e for any empty list, and we

have that *'ﬂgl Lli]=% ., L[i]=e . Thus fo1d(L) = *'ﬂal L[i] as required.

For the inductive step, assume that P(k) holds for some n € N and that for all lists L of length n, that
fold(L)= %V L[i]. We prove P(k + 1), that for all lists L of length k + 1, that fold(L) =

*‘I-Lzlal L[i]. Consider any arbitrary list L of length k + 1. By definition, £01d(L) in this case is
L[0] % £o1d(L[1:]). For notational simplicity, let's let L' = L[1:]. The list L' has length r, since it
consists of all elements of L except for the element at position 0. By our inductive hypothesis, we
have that £o1d(L') = *I,LZIO_ "L'[i]. Now, we know that L' consists of all of the elements of L ex-
cept for the first, so L'[i] = L[i + 1] for all indices i. Therefore, we have £o1d(L') =

*l,Lzlo_l L[i+1] . We can then adjust the indices to rewrite *llelo_l L[i+1] :*llell L[i]. Since |
L' =1Ll - 1, we can simplify this to *‘,Lzll L[i ]:*‘iL:'Il L[i],so fold(L') = *‘iL:']l L[i]. This

means that
|L|-1 |Ll-1

£old(L)=L[0] * Y L[i] = Y& L[i].
i=1 i=0

Since our choice of L was arbitrary, this proves that for any list L of length k + 1, we have that

fold(L) = *Eal L[i], completing the induction. l

What we have just done is an excellent example of mathematics in action. We started with a collection of
objects that shared some similar properties (in our case, recursive functions over list), then noticed that there
was something similar connecting all of them. We then defined a new framework that captured all of our
existing objects as special cases, then proved the result for the general result as a whole.

The beauty of what we've just done is that we immediately know that both of the following functions will
work correctly:

function union(list L) {
if |L] = o:
return 0.
else:
return L[@] U union(L[1:]).
}
function concatenateStrings(list L) {
if |L] = o:
return "".
else:
return concat(L[0@], concatenateStrings(L[1:])).
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If we want to prove correctness of these functions, we don't have to do a full inductive proof. Instead, we
can just prove that set union and string concatenation are monoids. I'll leave those proofs as exercises to the
interested reader.

3.4 Variants on Induction

We have seen induction can be useful when proving properties that hold for all natural numbers. However,
in many cases we are interested in proving properties of only a subset of the natural numbers — say, even
numbers, powers of two, odd numbers, etc. In that case, it may be useful to use a variant of mathematical
induction that captures the essential ideas of induction, but in a slightly different setting.

3.4.1 Starting Induction Later

Let's consider a simple question: what's bigger, n* or 2"? If you have played around with these functions be-
fore, then your intuition probably tells you that 2" grows much, much more quickly than n*>. For example,
when n = 15, n* = 225, while 2" = 32,768. However, if we plot the graphs of the two functions for small val-
ues, we see some interesting trends:

n n? 2"
0 0
1 1
2 4
3 9
4 16 16
5 25 32
6 36 64

Image from Google Graphs
As you can see, the two functions jockey for position. Initially, 2" is larger, but then n* overtakes it. Once n
=5, 2" becomes larger. But given that these functions have fluctuated before, is it possible that n* eventually
catches up to and overtakes 2"?

It turns out that the answer is no. We can prove this in many ways, particularly differential calculus. How-
ever, we can also prove this result by induction. Namely, we will want to prove the following:

Theorem: For all n € N where n > 5, n* < 2".

We won't concern ourselves with real numbers for now. Instead, we'll focus on natural numbers.

How exactly would we prove this? If we wanted to proceed by induction using the techniques we've seen so
far, we would have to prove some claim about every natural number, not just the natural numbers greater
than or equal to five. That said, it turns out that we can use our normal version of induction to prove this re-
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sult. We will do this by being very clever with how we choose our property P(n). Specifically, what if we
choose this property:

P(n) is the assertion that (n + 5)* < 2"+

If we can prove that this claim is true for all n € N, then we will have proven the theorem. The reason for
this is that if n = 5, then we know that » — 5 must be a natural number. Consequently, the fact that
P(n — 5) is true implies that ((n — 5) + 5)* < 2*~2*?_which simplifies down to n* < 2", as required. Using
this approach, our proof proceeds as follows:

Proof: By induction. Let P(n) = (n + 5)* <2"*¥. We will prove that P(n) holds for all » € N. From
this, we can conclude that for any n € N with n > 5 that (n + 5)> < 2"*>. This holds because for any
natural number n > 5, we have that n — 5 € N. P(n — 5) then implies that n* <2".

For our base case, we prove P(0), that 5* < 2°. Since 5% = 25 and 2° = 32, this claim is true. For the
inductive step, assume for some k € N that P(k) holds and (k + 5)* <2**. We will prove that
P(k + 1) holds, meaning that ((k + 5) + 1)> <2**9*D_ To see this, note that

((k+5)+1)

—(k+ 52 +2(k+5)+1 (distributing)

<2+ 2(k+5)+1 (by the inductive hypothesis)
<2+ 2(k+5)+5 (since 1 <5)

<254 2(k+5)+k+5 (since 0 <k)

=2+ 3(k+5) (collecting terms)

<23+ 5(k+5) (since 3 <5)

<2+ (k+5)(k+5) (since 0 < k)

=25+ (k+ 5)° (simplifying)

< 2K 4 ok (by the inductive hypothesis)
=2(2") (simplifying)

= 2E+9+D (by powers of exponents)

Thus ((k+ 5) + 1)* <2@**9%Y 50 P(k + 1) holds, completing the induction. m

This proof is interesting for a few reasons. First, it shows that we can use induction to reason about proper -
ties of numbers larger than a certain size, though we have to be careful with how we phrase it. Second, it
shows a style of proof that we have not seen before. To prove an inequality holds between two quantities,
we can often expand out the inequality across multiple steps, at each point showing one smaller piece of the
inequality. Since inequalities are transitive, the net result of these inequalities gives us the result that we
want.

Let's try another example of a problem like this, this time using two other functions that grow quite rapidly:
2" and n!. n!is an extremely fast-growing function that dwarfs the comparatively well-behaved 2". For ex-
ample, for n = 10, 2'° = 1,024, but n! = 3,628,800. However, for small values, we see the two functions vy-
ing for greatness:
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n 2" n!
0 1 1
1 1
2 2
3 6
4 16 24
5 32 120

From the looks of this table, it seems that as soon as n = 4, n! ends up overtaking 2". Does n! continue to
dominate from this point forward? Or does 2" ever catch up?

Well, considering that we're about to prove the following theorem:

Theorem: For any n € N with n > 4, 2" < n!.

it looks like n! is going to dominate from this point forward. The proof of this theorem is structurally quite
similar to what we had before; the main changes are the fact that we're now starting from four, not five, and
that our functions are different.

Proof: By induction. Let P(n) =2"** < (n+4)!. We will prove that P(n) holds for all n € N. From
this, we can conclude that for any n € N with n > 4 that 2" < n!. This holds because for any natural
number n > 4, we have that n — 4 € N. P(n — 4) then implies that n* < 2".

For our base case, we prove P(0), that 2* <4!. To see this, note that 2* = 16, while

41 =4 x3 x 2 x 1 =24. For the inductive step, assume that for some k£ € N that P(k) holds and
2649 < (k + 4)!. We will prove that P(k + 1) holds, that 29D < ((k+ 4) + 1)!. To see this, note
that

Y(k+4)+1)
=2(2%9) (using properties of exponents)
<2(k+4)! (by the inductive hypothesis)
<5(k+4)! (since 2 <5)
<(k+5)(k+4) (since 0 < k)
=(k+5)! (by definition of factorial)
=((k+4)+1)!

Thus 2¢*9*D< ((k+4) + 1)!, so P(k + 1) holds, completing the induction. m

The two proofs that we have just completed use induction, but are tricky to work with. In particular, we
want to prove a result about numbers greater than some specific threshold, but our proof instead works by
showing a result for all numbers, using addition to shift everything over the appropriate number of steps.

Let's consider an alternative style of proof. Suppose that we want to repeat our previous proof (the one
about n! and 2"). Can we just do the following:
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*  As our base case, prove that 2* < 4!,
*  As our inductive step, assume that for some n > 4, 2" < n! and prove that 2"*' < (n + 1)!.

In other words, this would be a normal inductive proof, except that we have shifted the base case up from
0 to 4, and now make an extra assumption during our inductive hypothesis that n > 4. Otherwise, the
proof proceeds as usual.

Of course, we're not even sure that it's mathematically legal to do this. Ignoring that (critical!) detail for
now, though, let's see what the proof would look like were we allowed to write it. It turns out that the
proof is much shorter than before and a lot easier to read:

Proof: By induction. Let P(n) = 2" < n!. We will prove that P(n) holds for all n € N with n > 4 by
induction.

For our base case, we prove P(4), that 2* < 4!. To see this, note that 2* = 16, while
41=4%x3x2x1=24,

For the inductive step, assume that for some k € N with k > 4 that P(k) holds and 2* < k!. We will
prove that P(k + 1) holds, meaning that 2! < (k + 1)!. To see this, note that

2k +1
=2(2H (by properties of exponents)
<2(k") (by our inductive hypothesis)
< (k+ 1)(k") (since2 <4<k<k+1)
=(k+1)!

Thus 2! < (k + 1)!, so P(k + 1) holds, which completes the induction. m

Wow! That's much cleaner, more succinct, and more clearly explains what's going on. The key step in
this proof is the fact that we know that 2 < n + 1. This gives a good justification as to why 2" < n! once n
gets to four — from that point forward, going from 2" to 2"*' doubles the previous value, but going from n!
to (n + 1)! increases the value by a factor of n + 1.

3.4.1.1 Why We Can Start Later %

How do we know that the above line of reasoning — starting induction later on — is even a valid mathemat -
ical proof? The only reason that we know induction works is because it was specifically sanctioned as a
mathematically valid form of reasoning. When we start making changes to induction, we can't necessar-
ily guarantee that the resulting form of reasoning is sound. We will need to justify why the previous proof
technique is legitimate before we start using it any further.

If you'll recall from Chapter Two, we proved that proof by contrapositive was legal by using proof by
contradiction as a starting point. That is, we used one type of proof to show that some other type of proof
was possible. We will now use normal mathematical induction to justify the above variant of induction,
where we start off our induction from a value other than zero.

We will specifically prove the following theorem:
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Theorem: Let P(n) be a property that applies to natural numbers and let m be a natural number. If
the following are true:

P(m) is true
For any k € N with k > m, P(k) - P(m + 1)

Then for any n € N with n > m, P(n) is true.

Compare this to the definition of the principle of mathematical induction from earlier in the chapter:

Let P(n) be a property that applies to natural numbers. If the following are true:

P(0) is true
For any ke N, P(k) —» P(k+ 1)

Then for any n € N, P(n) is true.

Our goal will be to show that our initial definition of mathematical induction will allow us to
prove that the above theorem is true.

In doing so it is critical to understand exactly what it is that we are trying to prove. Specifically,
we want to show the following:

(Principle of Mathematical Induction) — (Induction Starting at m)
In order to do this, we will do the following. We want to show that if the following hold:
e P(m)is true
* TForany k € N withk>m, P(k) - P(k+1)
Then we can conclude that
* Forany n € N with n > m, P(n) holds.

We will do this by means of a very clever trick. Suppose that we could define some new property Q(n)
using P(n) as a building block. We will choose Q(n) such that it has two special properties:

1. We can prove that Q(n) is true by induction on n.

2. If Q(n) is true for all natural numbers, then P(n) is true for all natural numbers greater than or
equal to m.

These may seem totally arbitrary, but there is a good reason for them. For property (1), it's important to
realize that the property P(n) we're trying to reason about looks similar to the sort of property we would
try to prove by induction. Unfortunately, since the base case doesn't start at 0, and since the inductive
step makes some assumptions about the value of n, we can't immediately use induction. If we could
somehow adjust P(n) in a way so that it didn't have these two modifications, we could easily prove it by
induction. Our choice of Q(n) will be a modified version of P(n) that does just that.

We want property (2) to hold so that we can find a connection between Q and P. If we don't have any re-
strictions on Q, then it's irrelevant whether or not we can prove it by induction. The trick will be to make
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it so that proving Q is true for all natural numbers shows that P is true for all natural numbers that are
greater than or equal to m, which is precisely what we want to show.

The good news is that we already have seen two examples of how to build Q from P. The idea is actually
quite simple — if we want to reason about numbers greater than or equal to m, we can just prove properties
about natural numbers of the form n + m. Since every natural number greater than or equal to m must be
m plus some smaller natural number, this means that we will have all of our cases covered. Specifically,
we'll define

Q(n) is the assertion that P(n + m) is true

This is fairly abstract, so let's give some examples. Suppose we want to prove, as before, that n* < 2" for
n > 5. In that case, we'd say that P(n) is the assertion n* < 2". We then define Q(n) to be the assertion that
P(n + 5) is true, which, if we expand it out, says that Q(n) asserts that (n + 5)* < 2", If you look back at
our first proof, this is exactly how we arrived at this result.

Given this setup, we can formally prove the theorem below.

Theorem: Let P(n) be a property that applies to natural numbers and let m be a natural number. If
the following are true:

P(m) is true
For any k € N with k > m, P(k) - P(k + 1)

Then for any n € N with n > m, P(n) is true.

Proof: Consider any property P(n) of the natural numbers for which the above is true. Now, define
Q(n) = P(n + m). This proof will work in two parts: first, we will prove, by induction, that Q(n) is
true for all n € N. Next, we will show that this implies that P(n) is true for all n € N where n>m.

First, we prove that Q(n) is true for all n € N by induction. As our base case, we prove Q(0),
meaning that P(m) holds. By our choice of P, we know that this is true. Thus Q(0) holds.

For the inductive step, assume that for some k € N that Q(k) is true, meaning that P(k + m) holds.
We will prove that Q(k + 1) is true, meaning that P(k + m + 1) holds. We know that k + m > m.
Thus by the properties of P, we know that P(k + m) implies P(k + m + 1). Since Q(n + 1) is defini-
tionally equivalent to P(k + m + 1), this proves that Q(k + 1) holds, completing the induction. Thus
Q(n) is true for all natural numbers n.

Now, we use this result to prove that P(n) is true for all natural numbers n > m. Consider any arbi-
trary natural number n > m. Thus n—m > 0, so n — m is a natural number. Therefore, Q(n — m)
holds. Since (n —m) + m = n and Q(n — m) asserts that P(n) is true, this means that P(n) holds.
Since our choice of n was arbitrary, this shows that P(n) is true for all natural numbers n > m. =

This proof is beautiful for several reasons. First, it combines proof by induction, which we've explored
extensively in this chapter, with our previous style of proving that general claims are true — choose some
arbitrary object, then show that the claim holds for that object. Second, it generalizes the two proofs that
we did earlier in this section in a way that allows us to use this new, much more powerful form of induc-
tion. From this point forward, we can start off our inductions anywhere in the natural numbers, using the
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proof we have just done to conclude that we have proven a result about all natural numbers greater than or
equal to some starting value.

3.4.2 Fibonacci Induction %

The Fibonacci sequence is a famous mathematical sequence that appears in a surprising number of places.
The sequence is defined as follows: the first two terms are 0 and 1, and each successive term is the sum of
the two previous terms. For example, the first several terms of the Fibonacci sequence are

0,1,1,2,3,5, 8, 13, 21, 34, 55, 89, ...
Formally speaking, we can define the Fibonacci sequence using this beautiful inductive definition:
* Fy=0
* Fi=1
* Fioa=F.+Fa

From our perspective, the Fibonacci sequence is interesting in that it is clearly defined inductively (every
term is defined by the two terms that precede it), but we cannot immediately use our principle of induction
to prove its properties. Using the forms of induction we've seen so far, we can use knowledge about 7 to
prove properties about n + 1. For the Fibonacci sequence, we need to use information about n and n + 1 to
prove properties about n + 2. This slight difference — the fact that we rely on the last two terms to reason
about the next term — complicates proofs about Fibonacci numbers.

In order to prove properties about the Fibonacci sequence or numbers related to them, we will need a new
type of induction specifically suited to working with the Fibonacci sequence. Specifically, we'll try to con-
struct our induction so that it mirrors the shape of the Fibonacci numbers. If we want to prove that some
property P(n) holds for the nth Fibonacci number, it would make sense to try to prove the following:

*  P(n) holds for the zeroth and first Fibonacci numbers.

e If P(n) holds for the nth and (n+1)st Fibonacci numbers, then it holds for the (n+2)nd Fibonacci
number.

From this, it should seem reasonably intuitive that we could claim that P(n) holds for all Fibonacci numbers.
We could see this because

e P(0) and P(1) hold.

*  Because P(0) and P(1) hold, P(2) holds.
e  Because P(1) and P(2) hold, P(3) holds.
e Because P(2) and P(3) holds, P(4) holds.

As with our previous result that we can fire off induction from any starting point, we will need to formally
prove that this form of induction (which we'll dub Fibonacci induction) actually works correctly. Our goal
will be to prove this theorem:
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Theorem: Let P(n) be a property that applies to natural numbers. If the following are true:
P(0) is true.
P(1) is true.
For any k € N, P(k) and P(k + 1) —» P(k + 2)

Then for any n € N, P(n) is true.

Again, our starting point is that we know the principle of mathematical induction to be true. We will
somehow have to use this as a building block in order to show that the above theorem — which gives rise
to its own style of proof — is indeed correct.

Our proof will be similar to the one we did last time. The objective will be to define some new property
Q(n) in terms of P(n) such that

*  Q(n) can be proven true for all n € N using the principle of mathematical induction, and
* If Q(n) is true for all n € N, then P(n) is true for all n € N.

The trick will be choosing an appropriate Q(n). To do so, let's review why this style of proof works in the
first place. If you look at the informal logic we used on the previous page, you'll note that we started with
P(0) and P(1) and used this to derive P(2). Then, from P(1) and P(2), we derived P(3). From P(2) and
P(3), we derived P(4). If you'll notice, each step in this proof works by assuming that P(n) is true for the
last two choices of n, then using that to prove that P(n) holds for the next choice of n. This suggests that
perhaps we'll want our choice of Q(n) to encode the idea that two adjacent values of P(n) still holds. For
example, what if we try choosing Q(n) as

Q()=P(n)and P(n + 1)

Could we use this to prove that Q(n) is true for all n € N by induction? Well, we'd first have to prove
that Q(0) holds, meaning that P(0) and P(1) are true. Fortunately, we already know that — this is one of
the two properties we know of P(n). Great!

So could we prove the inductive step? Our goal here would be to show that if Q(k) holds (meaning that
P(k) and P(k + 1) are true), then Q(k + 1) holds (meaning that P(k + 1) and P(k + 2) are true). Half of this
is easy — if we're already assuming that P(k + 1) is true to begin with, then we don't need to prove P(k + 1)
is true again. However, we do need to prove that P(k + 2) is true. But we've chosen P(k) such that P(k)
and P(k + 1) collectively imply P(k + 2). This means that if we know that P(k) and P(k + 1) are true, we
can easily get that P(k + 1) and P(k + 2) are true. In other words, if Q(k) is true, then Q(k + 1) must be
true as well. Excellent!

We can formalize this intuition below in the following proof:

Theorem: Let P(n) be a property that applies to natural numbers. If the following are true:
P(0) is true.
P(1) is true.
For any k € N, P(k) and P(k + 1) —» P(k + 2)

Then for any n € N, P(n) is true.
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Proof: Let P(n) be an arbitrary property with the above set of traits. Let Q(n) = “P(n) and

P(n + 1).” We will prove that Q(n) is true for all n € N by induction on n. Once we have proven
this, we will show that if Q(n) is true for all n € N, it must be the case that P(n) is true for all

n € N.

To see that Q(n) is true for all n € N, we proceed by induction. First, we prove that Q(0) is true;
namely, that P(0) and P(1) are true. By our choice of P(n), we know these properties are true, so
Q(0) holds.

For the inductive step, assume that for some k € N that Q(k) is true, meaning that P(k) and

P(k + 1) are true. We will prove Q(k + 1) is true, meaning that P(k + 1) and P(k + 2) are true. By

our inductive hypothesis, we already know that P(k + 1) is true, so we just need to show that

P(k + 2) is true as well. By our choice of P(n), we know that since P(k) and P(k + 1) are true, we

have that P(k + 2) is true as well. Thus we have that P(k + 1) and P(k + 2) hold, so Q(k + 1) holds
as well, completing the induction.

Finally, we need to show that because Q(n) is true for all n € N, we know that P(n) is true for all
n € N. To see this, note that for any n € N, we know that Q(n) is true, so P(n) and P(n + 1) are
true. Ignoring the extra detail that P(n + 1) is true, we now have that P(n) is true as well. Since
our choice of n was arbitrary, this proves that P(n) holds foralln € N. m

Cool! We now have a proof technique we can use to reason about the Fibonacci numbers. Let's not just
leave this sitting on the shelf; instead, let's go and use it to prove some interesting properties about Fi-
bonacci numbers and related problems!

3.4.2.1 Climbing Down Stairs

Let's start off by tackling a simple problem that has a rather surprising solution. Let's suppose that you're
standing at the top of a staircase, like this one:

You want to get down to the base of the staircase. In doing so, you can walk down using steps of size one
or steps of size two (but not any more — you don't want to come tumbling down the stairs!) For example,
here are two different paths you could take down the above staircase:
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Now, the question — how many paths down a staircase of size n can you take?
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If you take any reasonable-sized staircase, you'll find that there can be a lot of paths down. For example,
if you have the above staircase, there are eight different paths down:
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The number of paths just keeps getting bigger and bigger as the staircase gets higher and higher. Can we
find a nice expression that will tell us exactly how many paths down the stairs there are?

When faced with a problem like this, one reasonable approach would be to list off all the paths that we
can find, then check whether or not we can find a pattern in how they're constructed. For the staircase
with five stairs, we can write out those paths as a sequence of 1s and 2s,

e 11111
e 1112
e 1121
1211

e 211
e 221
e 212
e 122

1

There are a lot of patterns we can exploit here. Notice, for example, that the first path (1 1 1 1 1) is just
all 1s. The next four paths consist of all possible permutations of three 1s and one 2. The last three paths
consist of all possible permutations of two 2s and a 1. If we counted up how many ways there were to set
up these sorts of permutations, we could arrive at our answer.
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While the above approach works, it's a bit complicated and we might have better luck looking for other
patterns. What if we sorted the above sequences lexicographically (the way that you would order words
in a dictionary?) In that case, we get the following sequence of paths:

e 11111 e 122
e 1112 e 2111
e 1121 e 212
e 1211 e 221

Now, we can start to see a different structure emerging. Notice that for each of the paths that start with a
1, the structure of the path is a 1 followed by some path from the fourth step all the way back down to the
bottom of the stairs. Each of the paths that start with a 2 have the form of a path starting with a step of
size 2, followed by a path from the third stair all the way down. Intuitively, this makes sense — to get
down, you either take a step down one stair and then some path back down from there, or you take a step
down two stairs and then some path back down from there.

This observation can actually be used to develop a way of computing the number of paths down the stairs.
Assuming that we start out sufficiently “high enough” on the stairs that there's room to take steps of size
one and size two, then the total number of paths back down the stairs must be equal to the number of
paths that start with a step of size one, plus the number of paths that start with a step of size two. Since
each path starting with a step of size one initially takes us from stair n to stair n — 1, and each path starting
with a step of size two initially takes us from stair n to stair n — 2, this means that the number of paths
down the stairs from stair n is given by the number of paths down from stair n — 1, plus the number of
paths down from stair n — 2.

What this says is that if we're sufficiently high up on the stairs that we can take steps of size 1 and size 2,
we can determine the number of paths down based on the number of paths from the stairs one and two
steps below us. But what if we're very near the bottom of the staircase and can't do this? Well, the only
way that we couldn't take a step of size 1 and a step of size 2 would be if we are standing on stair 1, or we
are at the bottom of the staircase. If we are at stair 1, then there is exactly one path down — just take a
step of size one down to the bottom.

But what if we are at the base of the staircase? How many paths are there now? This is a subtle but im-
portant point. Initially, we might say that there are zero paths, since you can't take any steps here. But
this would be mathematically misleading. If there are indeed zero paths once you're standing at the base
of the staircase, then it would mean that there is no way to get to the bottom of the staircase once you're
already there. This seems suspicious. Ask yourself the following question — can you get to where you are
sitting right now from your current location? You'd probably think “yes — I'm already there!” In fact, for
this very reason, it would be inappropriate to say that there are zero paths down the stairs from the bottom
of the staircase. Rather, there is exactly one path, namely, not moving at all.

The thing to remember here is that there is a difference between “there are no paths” and “the only path is
the empty path.” When dealing with problems like these, it is critical to remember to maintain a distinc-
tion between “unsolvable” and “trivially solvable.” Many problems have silly solutions for small cases,
but those solutions are still indeed solutions!

Okay — at this point, we have a nice intuition for the number of paths down:
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* There is exactly one path down from a staircase of height 0 or height 1.

* For staircases with two or more steps, the number of paths down is the sum of the number of
paths down for a staircase of one fewer step plus the number of paths down for a staircase of two
fewer steps.

Let's try to make this a bit more formal. Let's define a sequence S, representing the number of paths
down from a staircase of height n. Translating the above intuition into something a bit more mathemati-
cally rigorous, we get that

b So = Sl =1.
b Sn+2 = Sn + Sn+1.

Now that we have this recurrence, we can start evaluating a few terms from it to see if we can recognize it
from somewhere. If we start expanding this out, we get the sequence

1,1,2,3,5,8,13, 21, ...

This should look very familiar — it's the Fibonacci sequence, shifted over by one term! Now that is indeed
surprising. The problem we described — walking down a staircase — superficially bears no resemblance at
all to the Fibonacci sequence. This isn't particularly unusual, though, since the Fibonacci sequence tends
to arise in all sorts of surprising contexts.

Are we satisfied that the number of paths down from a staircase of height n is the (n + 1)st Fibonacci
number? We've arrived at our result intuitively, but we haven't actually proven anything yet. To wrap up
this problem, and to put our new Fibonacci induction proof technique to use, let's formally establish the
above result:
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Theorem: On a staircase of n stairs, there are Fy.; paths from the top of the staircase down to the
bottom using step sizes of 1 and 2.

Proof: By induction. Let P(n) be “On a staircase of n stairs, there are F,.; paths from the top of the
staircase down to the bottom using step sizes of 1 and 2.” We will prove that P(n) is true for all
n € N.

As our base cases, we prove that P(0) and P(1) are true; that is, there are F; and F, paths down
staircases of heights 0 and 1, respectively. In the case of a staircase of height 0, there is exactly
one path down the staircase, namely, the path of no steps. Since F; = 1, the claim holds for P(0).
For a staircase of height 1, there is exactly one path down, which is to take a step of size one.
Since F» = 1, the claim holds for P(1).

For the inductive step, assume that for some k € N, that P(k) and P(k + 1) hold and that the num-
ber of paths down staircases of heights k and k + 1 using only step sizes of 1 and 2 is Fi; and Fio,
respectively. We want to prove P(k + 2), namely that the number of paths down a staircase of
height k + 2 using steps of size 1 and 2 is Fy.3. To see this, consider any path down such a stair-
case. This path must either begin with a step of size 1, in which case the path is formed by taking a
path down a staircase of size k + 1 and extending it by one step, or it must begin with a step of size
2, in which case the path is formed by taking a path down a staircase of size k and extending it by
one step. Consequently, the number of paths down the staircase of height k + 2 is given by the
number of paths down staircases of heights k and k + 1. By our inductive hypothesis, these num-
bers are Fy+; and Fi+». Consequently, the number of paths down is Fi:1 + Fi:2 = Fius, as required.
Thus P(k + 2) holds, completing the induction. m

3.4.2.2 Computing Fibonacci Numbers

The Fibonacci numbers are often introduced as a simple function that can be computed easily with recur-
sion. Typically, the recursive function is presented as follows:

int fib(int n) {

if (n == 0) return 0;

if (n == 1) return 1;

return fib(n - 1) + fib(n - 2);
}

We can prove that this function is correct by induction on #n:
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Theorem: For any n € N, fib(n) = F,.

Proof: By induction on n. Let P(n) = “fib(n) = F,.” We prove that P(n) is true for all n € N by in-
duction.

For our base case, we prove P(0) and P(1); namely, that fib(0) = F, and that fib(1) = Fi. To see this,
note that by construction, fib(0) = 0 = Fy and fib(1) = 1 = F;. Thus P(0) and P(1) hold.

For our inductive step, assume that for some & that P(k) and P(k + 1) hold and that fib(k) = F, and
fib(k + 1) = Fi.i. We prove P(k + 2), that fib(k + 2) = Fi.o. To see this, note that since k + 2 > 2, we
see that k + 2 # 0 and k + 2 # 1. Consequently, fib(k + 2) = fib(k) + fib(k + 1). By our inductive hy-
pothesis, this means that fib(k + 2) = Fx + Fi1 = Frao, as required. Thus P(k + 2) holds, completing
the induction. Il

Great — so we now have a function for computing Fibonacci numbers! But how efficient is it? To measure
the complexity of this fib function, we should count some quantity that measures the total amount of work
being done. One measure of complexity which might be good here is how many total function calls end up
being required. Since each function does at most some fixed amount of work (namely, declaring variables,
checking a fixed number of if statements, making a fixed number of recursive calls, and extra logic like set-
ting up and tearing down the stack frame), we can claim that the total work done is proportional to the num-
ber of function calls made.

To determine how many function calls are made, we can start off by drawing out a recursion tree, a diagram
of which function calls invoke which other function calls. Here are the recursion trees for n =0, 1, 2, 3, and
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If we count up the number of nodes in these trees, we get 1, 1, 3, 5, 9, ..., which doesn't seem to be any se-
quence that we know so far. Perhaps we could investigate the structure of this sequence in more depth to try
to arrive at a nice formula for it.

To start things off, let's see if we can write out some nice recurrence that describes the terms in the series.
Looking over our recursive function, we can note the following:

* Ifn=0orn=1, exactly one function call is necessary.

*  Otherwise, we need one function call for the initial call, plus a number of calls necessary to evaluate
fib(n — 1), plus a number of calls necessary to evaluate fib(n — 2).
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Let's denote by C, the number of function calls required to compute fib(r). Translating the above definition,
we end up getting that C, is defined as follows:

° GC=C=1.
° Cn+2 = Cn + Cn+1 + 1.

This is similar to the Fibonacci series, but it's not quite the same. Specifically, the Fibonacci sequence starts
off with the first two terms 0, 1, and doesn't have the +1 term in the recurrence step. In case you're curious,
the first few terms of this series are

1,1,3,5,9, 15, 25, 41, 67, 109, 177, ...

The question now becomes how we can try to get a value for C,, preferably in terms of the Fibonacci se-
quence F,. There are many different approaches we can take here, and in this section we'll see two ap-
proaches, each based on a different techniques.

The first technique that we can use is based on the following idea. The above recurrence looks a lot like the
normal Fibonacci sequence, but with a few extra 1s thrown into the mix. Could we somehow separate out
C, into two terms — one term based on the Fibonacci sequence, plus one extra term based on the extra +1's?

To apply this technique, we will do the following. First, let's try to identify how much of this recurrence we
can attribute to the Fibonacci sequence. One observation we can have is that since the first two terms of the
sequence are 1s and each successive term depends (partially) on the sum of the previous two terms, we could
consider thinking of this sequence as the Fibonacci sequence shifted over one step (as in the staircase prob-
lem), plus some extra terms. Specifically, let's see if we can write

Cn:Fn+l+En

Where E, is some “extra” term thrown into the mix to account for the extra 1s that we keep accumulating at
each step. In other words, we can write

En:Cn_Fn+1

If we can now find some value for E,, then we will end up being able to compute a value for C, in terms of
the (n+1)st Fibonacci number F,.; and the sequence C,. We still don't know how to compute E, yet, but
we've at least stripped away some of the complexity of our original problem.

In order to learn what E, is, we should probably try writing out some values for C, — F,.1. Below are the val-
ues for this sequence:

Cu 1 1 3 5 9 15 25 41 67
Fiu 1 1 2 3 5 8 13 21 34
E, 0 0 1 2 4 7 12 20 33

Now this is interesting. If you'll notice, the value of E,, the extra number of 1s added into the sequence, is
always exactly one less than Fy.i. In other words it appears that, E, = Fy..; — 1. Given that G, = F.., + E,, this
would mean that C, = Fy1 + (Fos1 — 1) = 2F 00 — 1.

We haven't actually proven this yet, nor do we have much of an intuition for why this would be true. If we
are purely interested in coming up with an answer to the question “how many function calls are made?,”
however, we don't actually need to know why. We can use a quick inductive proof to show that we have to
be correct. (Don't worry — we'll definitely come back to why this is true in a minute).
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Theorem: The number of function calls required to compute fib(7) is 2Fn. — 1.

Proof: By induction. Let P(n) be “fib(n) makes 2F,.; — 1 function calls.” We will prove that P(n) is
true for all n € N by induction.

For our base cases, we prove P(0) and P(1); namely, that fib(0) makes 2F; — 1 function calls and that
fib(1) makes 2F, — 1 function calls. In the case of both fib(0) and fib(1), exactly one function call is
made, specifically the initial calls to fib. Since F; = F> =1 and 2F, -1 =2 — 1 = 1, this means that
fib(0) makes 2F; — 1 calls and fib(1) makes 2F, — 1 calls, as required. Thus P(0) and P(1) hold.

For the inductive step, assume that for some & that P(k) and P(k + 1) hold, meaning that fib(k) makes
2F 1 — 1 calls and fib(k + 1) makes 2F., — 1 calls. We will prove P(k + 2), that fib(k + 2) makes
2F;3 — 1 calls. To see this, consider the number of calls required to evaluate fib(k + 2). The number
of calls required is 1 for the initial call to fib(k + 2), plus the number of calls required to evaluate
fib(k) and fib(k + 1). By the inductive hypothesis, these values are 2Fy,; — 1 and 2Fy.» — 1, respec-
tively. Thus the total number of calls is

1+ 2Fk+1 -1+ 2Fk+2— 1
:2Fk+1+2Fk+2+1—1—1
=2(Fis1 + Fr2) — 1
:Q«F‘k+3_1

Thus 2F;.3 — 1 calls are required to evaluate fib(k + 2), so P(k + 2) holds, completing the induction.

The numbers 1, 1, 3, 5, 9, 15, 25, ... are important in computer science and are called the Leonardo num-
bers. We denote the nth Leonardo number by L,. The previous proof shows that L, = 2F,.; — 1.

The above proof tells us that we at least have the right answer — the number of recursive calls is indeed 2 Fy.
— 1. However, it doesn't give us any insight whatsoever about where this number comes from. How on earth
did we arrive at this figure?

Let's revisit the intuition that led us here. We separated C, into two terms — the (n + 1)st Fibonacci number
Fu, plus some “extra” term E,. Let's investigate exactly where each term comes from.

The key insight we need to have here is exactly how fib(n) computes F;. I've reprinted this function below
for simplicity:
int fib(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n - 1) + fib(n - 2);
}

Notice that the fib function works in one of two ways. First, for its base cases, it directly returns a value.
For the recursive step, fib computes F, by computing F» and F;.; and adding those values together. But
those values originally came from adding up even smaller Fibonacci numbers, which in turn came from
adding up even smaller Fibonacci numbers, etc. Ultimately, the value returned by this function is derived by
adding up the Os and 1s returned in the base cases the appropriate number of times. You can see this below
by reexamining the recursion trees for computing fib(n):
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If we replace each function call with the value it returns, we get the following:
J * } J * }
* “v
l

Each of the numbers is the sum of the numbers below it, which in turn are the sum of the numbers below
them, until the recursion bottoms out into the base cases.

‘o

So now we can ask: how many of the function calls are base cases (values that actually produce the values),
and how many of the function calls are recursive cases that just combine together previously-produced val-
ues?

Below are the above recursion trees, with all of the recursive function calls highlighted in yellow, all of the
base cases highlighted in magenta:

e, 1k
53535{3

So how many of the function calls in each recursion tree are of each type? Notice that the number of ma-
genta circles in each of the recursion trees is given by the following sequence:

1,1,2,3,5,8,13, ...

This is the Fibonacci sequence shifted by one, which explains why we're getting some term that depends on
F.i. Now, how many yellow circles are there? Notice that it's always equal to the number of magenta cir-
cles minus one. The reason for this is structural. Let's begin with any collection of F;., magenta nodes rep-
resenting the base cases; for example, like this:
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Initially, all of these function calls are disconnected — there is nothing combining them together. In order to
link them together into a recursion tree, we will need to link them together by the other function calls that
called them. For example, we might add in this call:

® 6 0 :

Now, let's count how many different, disconnected “pieces” of the tree remain. Initially, we had five differ-
ent function calls, each of which were isolated. Adding in this yellow function call reduces this down to four
isolated pieces. In other words, adding in a yellow node decreased the number of disconnected pieces by
one.

Every time we introduce one of the yellow internal nodes to connect together two trees that are previously
disconnected, we decrease the number of disconnected trees by one. We ultimately need to end up with a
single recursion tree, which means that we need to pairwise merge all F,., disconnected trees together into a
single tree. This means that we will need to do Fn.i — 1 merges, each of which introduces a yellow node.
Consequently, the total number of nodes will be Fui + (Forr — 1) = 2F, — 1. This gives a completely differ-
ent but equally valid argument for why this must be the correct number of nodes in the tree.

3.5 Strong Induction

The flavors of induction we've seen so far — normal induction, induction starting at k, and Fibonacci induc-
tion — have enabled us to prove a variety of useful results. We will now turn to an even more powerful form
of induction called strong induction that has numerous applications within computer science, from the analy-
sis of algorithms to the understanding of the structure of numbers themselves.

To motivate strong induction, let's take a minute to think about how normal induction works. In a proof by
induction, we first show that some property holds for O (or some other starting number, as you saw before).
We then conclude “since it's true for O, it's true for 1,” then conclude “since it's true for 1, it's true for 2,”
then conclude “since it's true for 2, it's true for 3,” etc. Notice that at each step in the induction, we only use
the most recent result that we have proven in order to get to the next result. That is, to prove that the result
is true for three, we only use the fact that the result is true for two, and not that it's true for zero or one.
Similarly, if we wanted to prove that the result holds for a large number (say, 137), our proof would only
rely on the fact that the result was true for 136.

In a sense, it seems like we're handicapping ourselves. Why must we only rely on the most recent result that
we have proven? Why can't we use the entire set of all the results we've proven so far in order to establish
the next result?

This is the intuition behind a powerful type of induction called strong induction:
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Theorem (strong induction): Let P(n) be a property that applies to natural numbers. If the follow-
ing are true:

P(0) is true.
For any k € N, if P(0), P(1), ..., P(k) are true, then P(k + 1) is true.

Then for any n € N, P(n) is true.

Compare this to the normal principle of mathematical induction. In a regular induction, we would assume
that P(k) is true, then use it to show that P(k + 1) is true. In strong induction, we assume that all of P(0),
P(1), ..., and P(k) are true, then use this to show that P(k + 1) is true.

To give a sort of intuition for strong induction, let's work through a simple example that shows how to use
this style of proof technique. Suppose that you have a chocolate bar consisting of k + 1 smaller squares of
chocolate, all in a line. For example, the candy bar might look like this:

You want to break this chocolate bar apart into n + 1 squares. How many breaks do you have to make in
the chocolate bar in order to completely break it down?

Let's try some examples. If you have a chocolate bar with 6 pieces, then you'll need to make five total
breaks — one in-between each of the pieces of chocolate. If the chocolate bar has 137 pieces, you'd need
136 breaks. In general, it seems like you need to break the chocolate bar n times if it has n + 1 squares,
since there are n separators.

This result might not seem all that impressive, but if we actually want to prove that this is optimal, we
will need to be a bit more careful. Surely we can break the candy bar apart with n breaks, but can we do
it in fewer than n breaks? The answer is no, and to prove this we will show the following result:

Theorem: Breaking a linear candy bar with n + 1 pieces down into its individual pieces requires at
least n breaks.

How exactly can we show this? Well, we would somehow need to show that no matter how you try to
break the candy bar apart, you always have to make at least n breaks. To do this, we can try the following
line of reasoning — consider any possible way to break apart the candy bar, then show that no matter how
it's done, it always uses at least n breaks.

So what is it like to break apart a candy bar this way? If you think about it, any way that we break apart
the candy bar must start with some initial break, which will split the candy bar into two smaller pieces.
From there, we can start breaking those smaller pieces down even further, and those smaller pieces down
even further, etc. For example, here is one way of breaking down a candy bar with six pieces:
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Now for the key insight: notice that as soon as we break the chocolate bar with the first break, we are left
with two smaller chocolate bars. In order to break the overall chocolate bar down into individual squares,
we will need to break those smaller pieces down into their individual parts. Consequently, we can think of
any approach for breaking the chocolate bar down as follows:

*  Make some initial break in the chocolate bar.
*  Break the remaining pieces of chocolate down into their constituent pieces.

At some point this process has to stop, and indeed we can see that once we get down to a chocolate bar of
size one, there is no longer any work to do.

Using this insight, we can prove by strong induction that the total number of breaks required is at least n. To
do so, we'll initially prove the base case — that a chocolate bar with one piece requires no breaks — and from
there will show that no matter how you break the chocolate bar into pieces, the total number of breaks re-
quired to subdivide the remaining pieces, plus the initial break, is always at least n if the chocolate bar has
n + 1 pieces in it.

Here is the proof; we'll discuss it in some depth immediately afterwards:
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Proof: By strong induction. Let P(n) be “breaking a linear chocolate bar with n + 1 pieces down into
its constituent pieces requires at least n breaks.” We will prove P(n) holds for all n € N by strong in-
duction on 7.

For our base case, we prove P(0), that any way of breaking a chocolate bar consisting of a single
square into its constituent pieces takes at least zero breaks. This is true, since if there is just one
square, it is already broken down as far is it can be, which requires no breaks.

For our inductive step, assume that for some k € N, that for any k' € N with k' < k, that P(k") holds
and breaking a candy bar with k£’ + 1 pieces into its squares takes at least k' breaks. We will prove
P(k + 1), that breaking a candy bar with k + 2 pieces requires at least k + 1 breaks. To see this, note
that any way that we can break apart this candy bar will consist of an initial break that will split the
candy bar into two pieces, followed by subsequent breaks of those smaller candy bars. Suppose that
we break the candy bar such that there are m + 1 squares left in one smaller piece and (k + 2) — (m +
1) = (k—m) + 1 pieces in the second piece. Here, m + 1 must be no greater than

k + 1, since if it were, we would have k + 2 squares in one smaller piece and O in the other, meaning
that we didn't actually break anything. This means that m + 1 < k + 1, so m < k. Thus by our strong
inductive hypothesis, we know that it takes at least m breaks to split the piece of size m + 1 into its
constituent pieces. Similarly, since m 2= 0, we know that kK — m < k, so by our inductive hypothesis it
takes at least kK — m breaks to break the piece of size (k —m) + 1 into its constituent pieces. This
means that for any initial break, the total number of breaks required is at least

(k—=m)+m+ 1=m+ 1, as required. Thus P(m + 1) holds, completing the induction. l

Let's dissect this proof and see exactly how it works. First, notice that we began the proof by announcing
that we were going to use strong induction. Just as you should start a proof by induction, contradiction, or
contrapositive by announcing how your proof will proceed, you should start proofs by strong induction with
an explicit indication that this is what you are doing. It will make your proof much easier to read.

Notice that in the above proof, the proof of the base case proceeded as usual. We state what P(0) is, then
go prove it. However, the inductive step starts out noticeably differently from in our previous proofs by in-
duction. Notice that it began as follows:

For our inductive step, assume that for some k € N, that for any k' € N with k' < k, that P(k") holds
and breaking a candy bar with k' + 1 pieces into its squares takes at least n' breaks.

Here, we are not just assuming that P(k) holds for some choice of k. Instead, we are assuming that we al-
ready know that P(0), P(1), P(2), ... P(k) are true. Rather than writing this out longhand, we use a more
compact notation and say that P(n’) is true for any k' < k. Most proofs by strong induction will proceed this
way, and it is a good idea to make sure you understand why this notation with k'is equivalent to listing off all
the smaller choices of k.

From there, the proof proceeds more or less as usual — we explain why we can reason about the initial break,
and then introduce the variable m to reason about how many squares are in each side. However, there is one
key step to pay attention to. In the body of the inductive step, we invoke the inductive hypothesis twice,
once for each piece of the chocolate bar. Notice how we do it:
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Here, m + 1 must be no greater than k + 1, since if it were, we would have k + 2 squares in one
smaller piece and 0 in the other, meaning that we didn't actually break anything. This means that m +
1 <k+1,som < k. Thus by our strong inductive hypothesis, we know that it takes at least m breaks
to split the piece of size m + 1 into its constituent pieces. Similarly, since m = 0, we know that k — m
< k, so by our inductive hypothesis it takes at least k — m breaks to break the piece of size (k—m) + 1
into its constituent pieces.

Before we claim that we can use the inductive hypothesis on the smaller pieces, we first verify that the size
of each smaller piece is indeed no greater than k. It is critical that you do something like this in any proof
by strong induction. The inductive hypothesis only applies to natural numbers that are less than or equal to
k, and if you want to apply the inductive hypothesis to something of size n’, you need to first demonstrate
that k' < k.

3.5.1 The Unstacking Game

Let's continue our exploration of strong induction with a simple game with a surprising strategy. This game,
called the unstacking game, works as follows.” At the start of the game, you are presented a stack of n + 1
identical blocks. Your goal is to unstack all the boxes so that you are left with n + 1 stacks consisting of one
block each. To do so, you are allowed to take a stack of at least one block, then “unstack” that block by
splitting it into two stacks, where each stack has at least one block in it. For example, if you are playing this
game with seven blocks, the game might start out like this:

As your first move, you might split this tower into two stacks, one with two blocks and one with five blocks,
as shown here:

Your next move might be to split the stack of five blocks into two stacks, one with four blocks and one with
one block, as seen here:

*  Ifirst heard this problem from Prof. Dieter van Melkebeek of the University of Wisconsin.
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If you'll notice, so far this game is identically the same as the breaking chocolate problem — we have a linear
stack of blocks, and keep breaking that stack into smaller and smaller pieces. What differentiates this game
from the chocolate bar problem is that you are awarded a different number of points based on how you
break the stack into two pieces. In particular, with each move, you earn a number of points equal to the
product of the number of blocks in each of the smaller stacks that you create. For example, in the first
move, above, you would earn ten points (5 x 2), and in the second move you would earn four points (4 x 1).

Now, for the key question: what strategy should you use to maximize the number of points that you earn?

When confronted with a problem like this one, sometimes the best option is to try out a bunch of different
ideas and see how they pan out. Let's consider, for example, a stack of eight blocks. If we are trying to
maximize our score, then we might consider a few different strategies. Since our score depends on the prod-
uct of the sizes of the splits we make, one option might be, at each point, to split the largest tower we have in
half. This maximizes the score we get at each step, though it rapidly decreases the size of the remaining
towers. Another option might be to always just peel off one block from the tower at a time. This would
mean that each turn individually doesn't give us that many points back, but would mean that the rate at
which the tower shrinks is minimized, thus giving us more points for a longer period of time.

Let's try these strategies out! If we adopt the first strategy and keep splitting the largest tower cleanly in
half, then we get the following game:

-@GEHH-HHHH-HHHDD

2x2=4 2x2=4 1x1=1

H D-HHDDDD‘HDDDDDD

1x1=1 x1=1

Joooooo™"oooooood

1x1=1
16+4+4+1+1+1+1=28
This gives us a net of 28 points. If we adopt the second strategy, though, we get this game:
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=00=000=0000=00o0o0O

1x7=7 1x6=6 1x5=5 1x4=4

DDDD-@DDDDD‘HDDDDDD

1x3=3 1x2=2

JO0O00ddOo=0ooooood

1x1=1
7+6+5+4+3+2+1=28

Interestingly, we end up with 28 points again, which is the same as before. That's an odd coincidence — it
doesn't initially seem like these strategies should give the same score.

Let's try out a different approach. Eight happens to be a Fibonacci number, so perhaps we could split the
blocks apart using the patterns of the Fibonacci sequence. First, we split the 8 into a 5 and a 3, then the 5
into a 3 and a 2, then the 3 into a 2 and a 1, etc. This strategy combines the previous two strategies nicely —
we break the towers apart into large chunks, but don't split the tower too fast. How many points will we get?
If we play with this strategy, we get this result:

-HE-HE8-E0an~0Baes

5x3=15 3x2=6 1x1=1 1x2=2

:HDDD‘HHDDDD‘HDDDDDD

1x2=2 1x1=1

JOO0oO=00ooooodod

1x1=1
15+6+1+2+2+1+1=28

Amazing! Somehow we get 28 points once again. This is starting to seem a bit suspicious — we have come
up with three totally different strategies, and each time end up with exactly the same score. Is this a coinci-
dence? Or is there something deeper going on?

Before moving on, let's make the following conjecture:
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No matter how you play the unstacking game, you always get the same score.

Is it premature of us to conclude this? Possibly. We could end up being wrong and find that there actually
are strategies that give you more points than others. But at this point we're still exploring.

In order for us to explore this conjecture, we will need to do more than just play the game on a stack of size
eight. Instead, let's try playing the game on smaller stacks. That way, we can actually exhaustively list of all
possible ways that the game could be played, which would let us either (1) gather supporting evidence that
our conjecture is correct, or (2) find a counterexample that might tell us something more about the game.

Well, let's begin with a very simple game, where we have exactly one block in the initial stack. In this case,
the game immediately ends with us scoring O points. In that case, the claim “every strategy produces the
same score” is pretty obviously true.

If we have two blocks, then there is just one strategy:

H‘DD
1x1=1
We end up with one point, and this was the only strategy.

What about three blocks? It turns out that there's only one strategy here as well:

SIS —

1x2=2
1+2= 3

And we earn three points. So far this isn't particularly interesting, since there's only one strategy we can use
in these cases.

The first interesting case we find is when there are four blocks in the stack, because now we actually have a
choice of what to do. One option would be to split the stack into two stacks of size two, while the other
would be to split it into a stack of size three and a stack of size one. Both strategies are shown here:

SRRCERCT

‘HH HDD‘DDDD

2x2=4 1x1=1
4+1+1=6

In both cases, we end up with six points. Our conjecture is starting to seem like it might actually be true!
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At this point we can start to seriously believe that this conjecture might be true. Our next step will be to
think about how exactly we're supposed to prove it.

There are many paths we can use to prove that the score is always the same. Here's one particularly useful
idea: since we're claiming that the score is always the same, we might start by asking exactly how many
points you will end up getting in a game with n blocks in the initial stack. So far, we have this data:

n Total Score
1 0

2 1

3 3

4 6

5 ?

6 ?

7 ?

8 28

This sequence should seem familiar; we've encountered it before. If you'll recall, the sequence O, 1, 3,
6,7, 7,7 28, ..., s the sequence you get if you sum up the first » natural numbers. After all:

¢ The sum of the first 1 natural numbers is O.
e The sum of the first 2 natural numbersis0+ 1 =1.
e The sum of the first 3 natural numbersisO+ 1 +2 = 3.

In other words, if we have a game with n blocks in the initial stack, the score we would expect to get is equal
to the sum of the first # natural numbers. As we saw before, this sum is n(n — 1) / 2. Rephrasing this, if we
have n + 1 blocks in the initial stack, our score should be n(n + 1) / 2.

This might initially seem completely unexpected, but this particular sequence of numbers is not completely
unexpected. After all, one strategy that we can use works by always splitting the stack by pulling off exactly
one block at a time. This means that if we have n + 1 blocks in the initial stack, we'll get n points on the
first move, n — 1 points on the second move, n — 3 points on the third move, etc., giving us anetof 1 + 2 +
. + n points. We still haven't accounted for why the score is always exactly the same — that's a much
deeper question — but we at least aren't completely in the dark about where this number is coming from.

We now have a stronger version of our initial conjecture from before:
If you play the unstacking game with n + 1 blocks, you will get n(n + 1) / 2 points.

There are two questions left to consider — first, how do we prove this? Second, why is this true? These are
completely separate questions! It's often possible to prove results without having a deep understanding
about why they are true. In an unusual twist, I'd like to first go and prove that the result is true. We'll then
come back and try to figure out exactly why this result is true. My reasoning for this is twofold. First, start-
ing off with an initial proof helps guide our intuition as to why the result might be true. Second, in the
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course of exploring why this result happens to be true, we will be able to look back at our initial proof a sec-
ond time and explore exactly why it works.

So, how might we try proving this result? For this, we can return to the proof technique we used in the
chocolate bar problem. If you'll notice, when playing the unstacking game, every possible strategy consists
of a first move, in which we split the stack into two pieces. From there, there is no further overlap between
the points earned from those two stacks; we could think of the game as being two completely independent
games, each played on a stack whose size is determined by how we cut the initial stacks apart.

Given that this is true, we could proceed as follows. First, we'll show that the score obtained by any strategy
when there is exactly one block is always 0. Next, we'll assume that for any stacks of size 1, 2, 3, ..., n+ 1,
that the claim holds, and will consider a stack of size n + 2. The first move we make on such a stack will
split it into two smaller stacks, one of which we'll say has size k + 1, and the other of which has size (n — k)
+ 1. From there, we can apply the inductive hypothesis to get the total number of points from the subgames,
and can add in the score we got from making this particular move. If we can show that this sum comes out
correctly, then we will have a valid induction proof.

We can turn this proof idea into an actual proof here:

Theorem: No matter what strategy is used, the score for the unstacking game with n + 1 blocks is
nn+1)/2.

Proof: By strong induction. Let P(n) be “no matter what strategy is used, the score for the unstacking
game with n + 1 blocks is n(n + 1) / 2.” We will prove that P(n) holds for all n € N by strong induc-
tion.

For our base case, we prove P(0), that any strategy for the unstacking game with one block will al-
ways yield O( + 1) / 2 = 0 points. This is true because the game immediately ends if the only stack
has size one, so all strategies immediately yield O points.

For the inductive hypothesis, assume that for some k € N, that for all k' € N with k' < k, that P(k")
holds and the score for the unstacking game played with k' + 1 blocks is always k(K" + 1) / 2. We will
prove that P(k + 1) holds, meaning that the score for the unstacking game played with 7 + 2 blocks is
always (k + 1)(k + 2) / 2. To see this, consider any strategy for the unstacking game with &k + 2
blocks. This strategy consists of making some initial split, producing two smaller stacks, then split-
ting those smaller stacks down. Suppose that the initial split places m + 1 blocks into one stack,
which leaves k + 2 — (m + 1) = (k —m) + 1 blocks in the other stack. Since each stack must have at
least one block in it, this means that m = 0 (so that m + 1 > 1) and that m < k (so that (k-m) + 1 =
1). Consequently, we know that O < m < k, so by the inductive hypothesis we know that the total
number of points earned from splitting the stack of m + 1 blocks down must be

m(m + 1) /2. Similarly, since 0 < m < k, we know that O < k —m < k, and so by the inductive hy-
pothesis the total score for the stack of (k —m) + 1 blocks must be (k —m)(k—m + 1) / 2.

Let us consider the total score for this game. The initial move yields (m + 1)(k — m + 1) points. The
two subgames yield m(m + 1) / 2 and (k — m)(k —m + 1) / 2 points, respectively. This means that the
total number of points earned is
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m+D)k-m+1)+mim+1)/2+k-m)k—-m+1)/2
=2m+ 1) k-m+D2+mm+1)/2+k-m)k-m+1)/2
= Q2m+Dk-m+1D)+mm+ 1)+ k-m)k-m+1))/2
Qmk =2m* +2m +2k-2m+2+mm+ 1)+ (k—m)(k—-m+1))/2
Qmk =2m* +2k+2+m(m+ 1)+ (k—m)(k—m+1))/2
= Qmk-2m*+2k+2+m*+m+(k-m\k-m+1))/2
= Qmk-m*+2k+2+m+ k-m)k—-m+1))/2
= Qmk-m*+2k+2+m+ k> —mk+k—km+m>—m)/2
= Qk+2+K+k)/2
= (K+3k+2)/2
= k+1)(k+2)/2

As required. Since this result holds for any valid choice of m, we have that P(k + 1) holds, complet-
ing the proof.

No doubt about it — this proof is dense. The math in the middle section is very difficult, and seems to work
out through pure magic. There has to be a better way to prove this result, but to find it, we're going to need
to develop a better understanding of what's going on. The key to simplifying this proof will be to find a bet-
ter way to understand why on earth the math in the middle section happens to work out correctly.

At this point, let's perform a somewhat unusual step. We built up a huge amount of machinery at the start of
this chapter to be able to replace summations with nice closed form expressions that don't involve any sums.
In this proof, we ended up showing that the game, played with n + 1 blocks, always produces a score of n(n
+ 1) / 2. Equivalently, though, we could have proven that the score, when the game is played with n + 1
blocks, is equal to 2/, 7 . This might at first seem like we're making things more complicated — after all,
we've replaced a simple polynomial with a summation — but this might not actually be all that bad an idea.
After all, remember that the game score is formed by summing together a lot of smaller parts. Perhaps
putting our game total into the form of a summation will make things easier.

By rewriting the total score for n + 1 blocks using a summation, we can also use some of the geometric tech-
niques from earlier in order to reason about the sum. If you'll recall, the above summation is equal to the
number of squares in this “boxy triangle:”

Now, let's suppose that you're playing with n + 1 blocks and split the stack into two pieces. One of these
pieces will have k + 1 blocks in it; the other will have n — k blocks in it. This means that the total number of
points that you will earn will be 2./_, i from the tower of size k, 2=y ' i from the tower of size n — k,

and (k + 1)(n — k) from the move itself. The first two of these sums have nice geometric intuitions — they're
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the number of square in “boxy triangles” of height k and n — k — 1, respectively. In fact, we can superimpose
these triangles on top of the original boxy triangle from before:

1
n—k—1:-
Now, look at what's left uncovered in the above triangle — it's a rectangle of dimension

(k + 1) x (n — k). Such a rectangle has area (k + 1)(n — k), which is precisely the number of points we
earned from making this move.

This gives us a completely different intuition for what's going on. When we make a move, we earn a number
of points equal to the area of some rectangle. If we then cover up a part of the boxy triangle with that rec-
tangle, we're left with two smaller triangles that are still yet to be covered — one representing the points we'll
earn from the first stack created, and one representing the points we'll earn from the second stack we cre-
ated. Beautiful, isn't it?

What remains now is to repeat the previous proof using this geometric intuition. To do so, let's start off by
writing out the total points as a sum of the two summations and the points earned from the single turn:

o i+ Xy i+ k(n—k + 1)

We'd like to somehow show that we can rewrite this sum as the simpler sum 2./ i . How exactly might we
do this? Well, we arrived at this summation by taking some quantities that we already knew quite well, then
replacing them with (allegedly) more complex summations. What if we rewrite that final product (k(n — k) +
1) not as a product, but as a sum of a number of terms? In particular, we can treat this sum as the sum of »
— k + 1 copies of the number k. If we rewrite the product this way, we get

k—1 n—k n—k
Lo ¥ 2umg 1+ g
Notice that this summation runs from O to n — k, which includes n — k + 1 different terms.
Next, we can use the properties of summations we proved earlier in the chapter to simplify the above ex-
pression. In particular, notice that the last two sums run over the exact same indices. As we saw from be -
fore, this enables us to combine them together into a single sum, whose summand is just the sum of the two

smaller summands (it might help to reread that once or twice to make sure you can parse it correctly). This
means that we can rewrite the above as

k=1 n—k
Doy i+ 2, 14K
And now for the final step. This second summation ranges from i = 0 to n — k, and at each point sums up the

value i + k. Let's suppose that we define a new variable j and say that j =i + k. If we do this, then we'll find
that as i ranges from O to n — k, this variable j ranges from & to n. Consequently, we have the following:
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n—k

>, (i+k):2j_:k j

This means that we can rewrite our sum as

k—1 n
Qo %2
Finally, we'll do one more simplification. This first sum computes 0 + 1 +2 + ... + k— 1. The second sum
computes k + (k+ 1) + (k+ 2) + ... + n. We can therefore just combine the sums together to get

n .
>
i=0
Et voila. We've got the sum that we wanted to achieve.

Using summations rather than the explicit formula n(n + 1) / 2, let's rewrite our initial proof about the un-
stacking game. This new proof is much shorter, much cleaner, and gives a better intuition for what's going
on.

Theorem: No matter what strategy is used, the score for the unstacking game with n + 1 blocks is

no
i
i=0

Proof: By strong induction. Let P(n) be “no matter what strategy is used, the score for the un-
stacking game with n + 1 blocks is 2./_,i .” We will prove that P(n) holds for all n € N by strong
induction.

For our base case, we prove P(0), that any strategy for the unstacking game with one block will al-
ways yield >'_,7=0 points. This is true because the game immediately ends if the only stack
has size one, so all strategies immediately yield O points.

For the inductive hypothesis, assume that for some k € N, that for all k' € N with k' < k, that P(k')
holds and the score for the unstacking game played with k' + 1 blocks is always 2. ,i . We will
prove that P(k + 1) holds, meaning that the score for the unstacking game played with k + 2 blocks
is always X% i . To see this, consider any strategy for the unstacking game with k + 2 blocks.

This strategy consists of making some initial split, producing two smaller stacks, then splitting
those smaller stacks down. Suppose that the initial split places m + 1 blocks into one stack, which
leaves k + 2 — (m + 1) = (k— m) + 1 blocks in the other stack. Since each stack must have at least
one block in it, this means that m > 0 (so that m + 1 > 1) and that m < k (so that (k- m) + 1 > 1).
Consequently, we know that 0 < m < k, so by the inductive hypothesis we know that the total num-

ber of points earned from splitting the stack of m + 1 blocks down must be 2./, . Similarly,
since 0 < m < k, we know that 0 < k —m < k, and so by the inductive hypothesis the total score for
the stack of (k—m) + 1 blocks must be 2./ i .

Now, let us consider the total score for this game. Splitting the stack with the initial move yields
(m + 1)(k—m + 1) points. The two subgames yield > ,i and X'_7"i points, respectively. This
means that the total number of points earned is
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S i ik 1)(k—m+1)

—Zl ol+z, o l+z m+1 :Zl 01+Z l+m+1
k—m+1 k—m+1+m k+1

_zz —o! Zz m+1 i _z i :Zi:Oi

As required. Since this result holds for any valid choice of m, we have that P(k + 1) holds, com-
pleting the proof. m

3.5.2 A Foray into Number Theory

To see just how powerful strong induction is, we will turn to a problem explored by ancient mathematicians
in Greece and India. This problem concerns finding a way to measure two different quantities using a single
common measure. Suppose, for example, that two drummers are each hitting a drum at different rates. The
first drummer (call her drummer A) hits her drum once every four seconds, and the second drummer (call
him drummer B) hits his drum once every six seconds. If these drummers start at the same time, then the
series of drum hits will be as follows:

* TimeO0: A, B e Time 8: A * Time 18: B
e Time4: A  Timel12: A, B *  Time 20: A
e Time6:B e Time 16: A e Time?24: A, B

As you can see, there is a repeating pattern here — at precisely determined intervals, A and B will hit their
drums, sometimes hitting the drum together, and sometimes hitting the drum at different times. One ques-
tion we might ask is the following — given the time delays between when drummers A and B hit their drums,
at what time intervals will A and B simultaneously hit their drums?

Let's consider a different, related problem. Suppose that you have a room of dimensions 60m x 105m and
you want to tile the floor with square tiles. In doing so, you want to use the smallest number of square tiles
possible. What dimension should you make the square tiles in order to minimize the total number of tiles
needed? Well, you can always just use tiles of size Im x 1m, which would require you to use 60 x 105 =
6300 tiles. That's probably not a good idea. You could also use Sm x 5m tiles, which would have fifteen
tiles one side side and twenty-one tiles on the other side, which comes out to 252 tiles. You could not use
6m x 6m tiles, however, because if you tried to do this you would have excess tiles hanging over one side of
the room. The reason for this is that 6 does not divide 105 cleanly. To minimize the number of tiles used,
the ideal solution is to use tiles of size 15m x 15m, which requires four tiles on one side and seven tiles on
the other, for a total of only twenty-eight tiles required.

So what is the connection between the two problems? In the problem with the drummers, we have two dif-
ferent numbers (the delay time in-between the drum beats) and want to find the shortest time required be-
fore the two drums will beat at the same time. Since each drum beats at a fixed interval, any time at which
the drums can beat together must be a multiple of both drum intervals. We therefore want to find the small -
est time that is a multiple of both intervals.

In the problem with tilings, note that the size of any square tile must cleanly divide the lengths of both
sides of the room. Otherwise, trying to tile the room with tiles of that size would fail, since there would
be some extra space overhanging the side of the room. Consequently, we want to find the largest number
that cleanly divides both sides of the room.
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We can formalize these two intuitions by introducing two new concepts: the least common multiple and
the greatest common divisor. But first, we need to introduce what it means for one number to be a multi-
ple of another, or for one number to divide another.

Let m, n € N be natural numbers. We say that m divides n, denoted m | n, if there is a natural num-
ber g such that n = gm. We say that n is a multiple of m iff m divides n.

Intuitively, m divides n means that we can multiply m by some other natural number to get n. For exam-
ple, 2 divides 10 because 10 = 2 - 5. Similarly, 15 divides 45 because 45 = 3 - 15. Note that any number
is a divisor of 0. A quick proof, just to see the definition in action:

Theorem: For any n € N, we have that n | 0.

Proof: We need to show that n | 0, meaning that there is some q € N such that 0 = nq. Take m = 0.
Then we have that ng =n - 0 = 0, as required. ®

This proof isn't the most scintillating argument, but it's good to see exactly how you would structure a
proof involving divisibility.

Let's consider any two natural numbers m and n. m has some divisors, as does n. We might therefore find
some q such that g | m and q | n. These numbers are called common divisors:

If m, n € N, then the number g is a common divisor of m and n if g| m and q | n.

In our question about tiling the floor of the room, we were searching for a common divisor of the lengths
of the sides of the room that was as large as possible. We call this number — which is a common divisor
of the room lengths and the largest possible such divisor, the greatest common divisor of the room
lengths:

If m, n € N, then the greatest common divisor of m and n, denoted gcd(m, n), is the largest natural
number d such that d | m and d | n.

Before we move on and start reasoning about the greatest common divisor, we have to pause and ask our-
selves a serious question — how do we know that any two numbers even have a great common divisor in
the first place? In case this seems obvious, I'd like to assure you that it's not, and in fact there is a slight
error in the above definition.

What would it mean for two numbers m and n to not have a greatest common divisor? There would be
two possible options here. First, it might be the case that m and n have no divisors in common at all. In
that case, there isn't a “greatest” common divisor, since there wouldn't be any common divisors in the first
place! Second, it might be the case that m and n do indeed have some divisors in common, but there are
infinitely many such divisors. In that case, no one of them would be the “greatest,” since for any divisor
we could always find another divisor that was greater than the one we had previously chosen.
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In order to show that greatest common divisors actually exist, we will need to show that the two above
concerns are not actually anything to worry about. First, let's allay our first concern, namely, that there
could be two numbers that have no common divisors at all. To do this, we'll start off by proving the fol -
lowing (hopefully obvious!) result:

Theorem: For any n € N, we have that 1 | n.

Proof: We need to show that 1 | n, meaning that there is some q € N such that 1 - g =n. Take q =
n. Then1-q=1-n=n,asrequired. m

This means that given any m and n, there is always at least one divisor in common, namely 1. There
could be many more, though, and this brings us to our second concern. Can we find two numbers for
which there is no greatest common divisor because there are infinitely many common divisors?

The answer, unfortunately, is yes. Consider this question:
What is gcd(0, 0)?

We know from before that any natural number n is a divisor of 0. This means that the set of natural num-
bers that are common divisors of 0 and 0 is just the set of all natural numbers, N. Consequently, there is
no one greatest divisor of 0 and 0. If there were some greatest divisor n, then we could always pick n + 1
as a larger divisor. Consequently, gcd(0, 0) is undefined! Is this a bizarre edge case, or are there other
pairs of numbers that have no greatest common divisor?

One important property of divisibility is the relative sizes of a number and its divisor. Initially, it might
be tempting to say that if m divides n, then m must be no bigger than n. For example, 5 divides 20, and 5
< 20, and 137 divides itself, and surely 137 < 137. However, this is not in general true. For example, 137
divides 0, since every natural number divides zero, but we know that 137 > 0.

However, if we treat 0 as a special case, then we have the following result:

Theorem: If m | n and n # 0, then m < n.

How might we go about proving this? In a sense, this is an “obvious” result, and it seems like we should
be able to demonstrate it directly. But doing so ends up being a bit trickier than first glance might sug-
gest. Instead, we'll do a proof by contradiction, showing that if m | n (with n not equal to 0) and m > n, we
can arrive at a contradiction about the value of n.
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Proof: By contradiction; assume that m | n, that n # 0, but that m > n. Since m | n, we know that
there must be some q such that n = gm. This q cannot be 0, since otherwise we would have that
n=qgm=0-m=0, contradicting the fact that n # 0. Similarly, this q cannot be 1, since then we
would have that n = gm = 1 - m = m, which contradicts the fact that m > n. So now we have that

g > 2. As one additional detail, note that m > n. Since n # 0, this means that m # 0 either. We thus
have that m # 0.

Since m > n, this means that gm = n < m, meaning that gm < m. Since m # 0, we can divide both
sides of this inequality by m to get that g < 1. But this is impossible, since we know that q > 2.

We have reached a contradiction, so our assumption must have been wrong. Thus if m | n and
n # 0, we must have that m<n. m

This proof is a bit more elaborate than our previous proofs. We needed to establish several smaller results
along the way — namely, that the quotient g must be at least two, and that m itself could not be zero. Once
we have these results, however, the result follows from a simple contradiction.

The reason that this result is important is that it allows us to conclude that there must indeed be a greatest
common divisor for any pair of natural numbers other than (0, 0). The reason for this is that for any num-
bers m and n that are not both identically zero, at least one of these numbers must be nonzero, and thus
cannot have any divisors larger than itself. Consequently, one of the numbers {1, 2, 3, ..., n} must be the
greatest common divisor of m and n. We're not sure which one it is, but since there are only finitely many
numbers to consider, we can guarantee that one of them must be the largest.

But how does the gcd relate to our question about drumming? In the case of the drummers, we wanted to
find the smallest number that was a multiple of two other numbers. This is called the least common mul-
tiple of the two numbers:

For any natural numbers n and m, a number k is called a common multiple of n and m if n | k and
m | k. The least common multiple of m and n, denoted Icm(m, n), is the smallest of all common
multiples of m and n.

We are still tasked with proving that the least common multiple of any two numbers m and n actually ex-
ist. We'll defer this proof until later, when we've built up a few more mathematical tools. However, we
do have the following result:

Theorem: For any m, n € N, where m and n are not both zero, lcm(m, n) = mn / gcd(m, n).

In the interests of time and space, this proof is left as an exercise at the end of this chapter. However, this
result does connect the Icm and gcd of two numbers together. By computing the gcd of two numbers, we
can compute the Icm of those numbers. In other words, we can study the properties of the greatest com-
mon divisor in order to study the properties of the least common multiple.

We have now defined gcd, but have not provided any way to actually find what the gcd of two natural
numbers is. This is a step in the right direction — at least we've identified what it is that we're looking for
— but otherwise is not particularly useful. To wrap up our treatment of greatest common divisors, let's ex-



Chapter 3: Mathematical Induction

plore some algorithms that can be used to compute the gcd of two natural numbers (that aren't both zero,
of course).

To motivate our first algorithm, let's return to the original motivating question we had for the greatest
common divisor. Suppose that you have a room whose side lengths are m and n. What is the largest size
of square tile that you can use to use to tile the room?

This problem dates back to the ancient Greeks, who made a very clever observation about it. Suppose
that we have an m X n rectangle, where m > n. If we want to find the largest size of the square tiles that
we can use to cover the room, one idea is to place a n x n square tile over the rectangle, flush up against
one side of the room. For example, given the rectangle below, which has size 45 x 35, we would begin by
placing one 35 X 35 square tile into the rectangle, like this:

35

45

You might wonder why we're doing this — after all, in this case, we can't tile the room with 35x35 tiles!
Although this is absolutely true, we can make the following observation. Since any tile that we do use to
cover the room must have a side length that divides 35, once we find the actual maximum size of the tile
that we're going to use, we can always replace that 35 x 35 tile with a bunch of smaller square tiles. For
example, if we discovered that the actual tile size is 7 x 7 (it isn't, but humor me for a minute), then we
could always “retile” the 35 x 35 square with 7 x 7 tiles like this:

71

—

7

There is one more key observation we can have. After we place down this 35 x 35 tile in the room, we're
left with a 35 x 10 rectangle that isn't tiled. Now, remember that our goal is to find the largest square tile
size that we can use to tile the entire room. We just saw that once we've found that tile size, we can al -
ways replace the large tile we've placed with a collection of smaller tiles. Consequently, if we think about
what the room would look like once we've tiled it appropriately, we know that it must consist of a tiling of
the large square we placed down, plus a tiling of the remaining space in the room.

Okay, so how might we find the size of the largest square tiles we could use in the 35 x 10 room? Using
exactly the same logic as before, we could place a 10 x 10 tile in this section of the room, yielding this
setup:

35

45
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But why stop here? We can fit two more 10 x 10 tiles in here. If we place these down, we end up with
the following:

35

I

-~ . -

45

We're now left with a 10 X 5 rectangle. At this point, we can note that since five cleanly divides ten, we
can just drop down two 5 x 5 rectangles into what remains. These are the largest square tiles that we can
fit into this 10 x 5 space. Using our previous logic, this means that 5 x 5 tiles are the largest square tiles
we can use to tile the 35 x 10 rectangle, and therefore 5 x 5 tiles are the largest square tiles we can use to
tile the 45 x 35 rectangle. Consequently, we should have that gcd(45, 35) = 5, which indeed it is.

This algorithm is generally attributed to Euclid, the ancient Greek mathematician, and is sometimes called
the Euclidean algorithm. The rest of this section formalizes exactly how this algorithm works.

To understand Euclid's algorithm in more depth, let us abstract away from rectangles and squares and try
to determine mathematically how this algorithm works. Take the above room as an example. Initially, we
wanted to compute gcd(45, 35). To do so, we placed a 35 x 35 tile in the room, which left us with a
smaller room of size 35 x 10. We then tried to compute the greatest common divisor of those two num -
bers, gcd(35, 10). Next, we placed three 10 x 10 tiles into the room (the largest number of 10 x 10 tiles
that fit), leaving us with a 10 x 5 room.

It seems that the algorithm works according to the following principle: given an m x n room, subtract out
as many copies of n as is possible from m. This leaves a room of size n x r, for some natural number r.
From there, we then subtract out as many copies of r as we can from n, leaving us with a room of size r x
s for some natural number s. We keep on repeating this process until we end up with a pair of numbers
from which we can immediately read off the greatest common divisor.

Now, given a pair of (nonzero) natural numbers m and n, where m > n, what number r do we get when we
continuously subtract out n from m until we cannot do so any more? Well, we know that this number r
must satisfy m — nq = r for some natural number g, since r is what's left after we pull out as many copies
of n as we can. We also know that r must satisfy 0 < r < n. The reason for this is simple — if r < 0, then
we pulled out too many copies of n, and if r > n, then we didn't pull out enough copies.

Let's rewrite the expression from above by moving nq over to the other side. This gives us that m = nq +
r, where 0 < r < n. With a bit of thought, we can realize that these values g and r are actually meaningful
quantities. Specifically, r is the remainder when m is divided by n, and q is the (integer) part of the quo-
tient of m and n. In other words, this algorithm that works by tiling a rectangle with a lot of squares is re-
ally just a fancy way of doing division with remainders!

Before we move on, let's introduce an important theorem:
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Theorem (the division algorithm): For any natural numbers m and n, with n # 0, there exist unique
natural numbers g and r such that

m =nq + r, and
0<r<n

Here, q is called the quotient, and r is called the remainder.

This theorem is called the division algorithm, which is a bit of a misnomer. It's definitely related to divi-
sion, but there's nothing algorithmic about it. The theorem asserts that there is a unique way to divide two
natural numbers to produce a quotient and a remainder. The uniqueness here is important — it's not just
that we can do the division, but that there is exactly one way to do this division.

Given that we always compute a quotient and remainder, let's introduce one more piece of terminology:

For any natural numbers m and n, if n # 0, then the remainder of m when divided by n is denoted m
rem n. Specifically, m rem n is the unique choice of r guaranteed by the division algorithm such
that m=gqgn +r.

For example, 5 rem 3 = 2, and 137 rem 42 = 11. However, 11 rem O is not defined. In many programming
languages, the remainder operation would be expressed using the % operator.

Now that we have this terminology, we can start to talk about how the Euclidean algorithm actually works.
When given m and n, the act of adding as many n X n tiles as possible is equivalent to computing m rem n,
since we're eliminating as many copies of n from m as follows. In other words, the Euclidean algorithm tries
to compute ged(m, n) by computing gcd(n, m rem n).

We already discussed a geometric intuition for why this would work, but can we somehow formalize this ar-
gument? It turns out that the answer is “yes,” thanks to a clever and ancient theorem.

Theorem: For any natural numbers m and n, with n # 0, gcd(m, n) = gcd(n, m rem n).

Before proceeding, let's see what this theorem tells us. According to this theorem, we should have that
gcd(105, 60) = gcd(60, 45). We should then have that ged(60, 45) = ged(45, 15). At this point, we can eas-
ily conclude that gcd(45, 15) = 15, since 15 cleanly divides 45. This means that gcd(105, 60) = 15, which
indeed it is.

So how do we prove this theorem? Given just what we know about gcd so far, this might initially appear
quite tricky. However, there is one nice technique we can use to try to establish this fact. Recall that gcd(m,
n) is the largest divisor in the set of all common divisors of m and n. If we can show that the pairs (m, n)
and (n, m rem n) have exactly the same common divisors, it would immediately follow that gcd(m, n) =
ged(n, m rem n), since in each case we are taking the largest element out of the same set. Consequently, we
can prove that gcd(m, n) = gcd(n, m rem n) by proving that any common divisor of (m, n) is a common divi-
sor of (n, m rem n) and vice-versa.
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Proof: Consider any m, n € N with n # 0. We will prove that any common divisor d of m and n is a
common divisor of n and m rem n and vice-versa. From this, the claim that ged(m, n) = gcd(n, m
rem n) follows by the definition of gcd.

First, we show that any common divisor d of m and 7 is also a common divisor of n and m rem n.
Since d is a common divisor of m and n, we know that d | m and d | n. Since d | m, there exists a nat-
ural number g such that m = dqo. Since d | n, there exists a natural number ¢, such that n = dg;. We
need to show that d | n and that d | m rem n. The first of these two claims is immediately satisfied,
since we already know d | n, so we just need to show d | m rem n, meaning that there is some ¢’ such
that m rem n = dq'. Using the division algorithm, write m = ng + m rem n. We can rewrite this as

m —ng =m rem n. Since m = dqo and n = dq;, this means that dgo — dgiqg = m rem n, meaning that
d(go — q1q) = m rem n. Taking q' = qo — q1q, we have that m rem n = dq’, so d | m rem n as required.

Next, we show that any common divisor d of n and m rem n is a common divisor of m and n. Since
d is a common divisor of n and m rem n, we know that d | » and d | m rem n. We need to show that
d|mand d | n. This second claim we already know to be true, so we just need to prove the first.
Now, since d | n and since d | m rem n, there exist natural numbers go and g: such that n = dgo and
mrem n = dq,. To show that d | m, we need to show that there is a ¢’ such that m = dg'. Using the di-
vision algorithm, write m = nq + m rem n. Consequently, we have that m = dqog + dq, = d(qoq + q1).
Taking q' = qog + q1, we have that m = dq’, so d | m as required. l

This proof is a bit long, but conceptually is not very difficult. We keep applying definitions in each case to
write two of m, n, and m rem n as multiples of d, then use the division algorithm to show that the third is a
multiple of d as well.

We now have a theorem that says that gcd(m, n) = ged(n, m rem n), assuming that n # 0. However, we
haven't discussed what happens when n = 0. In that case, we are trying to compute ged(m, 0). If m = 0,
then this is mathematically undefined. However, if m # 0, then this is mathematically legal. In fact, we have
that ged(m, 0) = m, since m is the largest number that divides m, and any number divides 0. Let's quickly
formalize this:

Theorem: For any m € N*, gcd(m, 0) = m.

Proof: Let m be any arbitrary positive natural number. Then gcd(m, 0) is the largest common divisor
of m and 0. We know that m | m, since m = 1 - m, and by our previous result all divisors of m must
be no greater than m. Thus m is the greatest divisor of m. Since we also know that m | 0, m is a com-
mon divisor of m and 0, and there are no greater common divisors. Thus gcd(m, 0) = m. B

We now have two key theorems about gcd. The first one says that the ged stays the same after you compute
the remainder of the two arguments. The second one says that once we reduce the second argument to 0, we
know that the gcd is just the first value. This means that we can finally introduce a description of the Eu-
clidean algorithm. Consider the following function:

int euclideanGCD(int m, int n) {

if (n == 0) return m;
return euclideanGCD(n, 